Школьная Энциклопедия

Топливо для самолетов

Также интересует, почему самолеты летают на керосине. Да, в основном так и есть, но дело в том, что некоторые типы техники используют в качестве топлива привычный бензин и даже солярку. d7f455c18df69a59b89d703599abf4d5.jpgНо в чем преимущество керосина? Таковых несколько.

Первым, наверное, можно назвать его стоимость. Он значительно дешевле, чем бензин. Второй причиной можно назвать его легкость, в сравнении с тем же бензином. Также керосин имеет свойство гореть, если можно так сказать, плавно. В машинах – легковых или грузовых – нам нужна возможность резкого включения и выключения двигателя, когда самолет рассчитан на то, чтобы его запустить и постоянно поддерживать движение турбин на заданной скорости длительное время, если говорить о пассажирских самолетах. Легкомоторная авиация, которая не предназначена для перевозок огромных грузов, а по большей части связана с военной промышленностью, с агрохозяйством и прочее (в такой машине могут разместиться только до двух человек), мала и маневренна, а потому бензин является подходящим для этой области. Его взрывное горение подходит для того типа турбин, которые установлены в легкой авиации.

Почему самолеты не летают через Индийский океан

Действительно, если открыть любую карту полетов, можно обнаружить, что маршрут воздушных судов, следующих над водами Индийского океана, всегда выстраивается вдоль суши, даже если такой путь кажется более длинным.

После нескольких авиапроисшествий последних лет, стало набирать популярность мистическое околонаучное объяснение катастроф и исчезновений летательных аппаратов в этом географическом регионе. Причем особенности карты полетов воздушных судов сторонники этой теории приводят, как доказательство своей правоты. Конечно, истинный ответ далек от мистики.

Современные пассажирские самолеты летают в соответствии с нормами ETOPS – сводом требований к полетам двухмоторных воздушных судов над местностью без ориентиров. Эти нормы были разработаны Международной организацией гражданской авиации.

Согласно ETOPS, маршруты составляются так, чтобы воздушное судно всегда находилось в пределах установленного максимального времени полета до ближайшего аэропорта, куда можно было бы дотянуть в случае отказа одного их двигателей.

В настоящее время максимальный интервал по этим нормам составляет 180 минут, в зависимости от конструкции самолеты также сертифицируют на 60 и 120 минут предельного удаления от ближайшего аэродрома. Вот почему через безлюдные просторы Индийского Океана почти не проходят маршруты гражданской авиации.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сфере

Как летают самолеты

Для того, чтоб самолет полетел, то есть, набрал высоту, и летел вперед, необходимо создать условия, при которых:

  • Самолет по взлетной полосе разгонится до скоростей на уровне 220-280 км/час.
  • Образуется сила, которая будет толкать его вверх.
  • Самолетом можно будет управлять в воздухе.

За разгон самолета отвечают мощные двигатели, которые сжигают в единицу времени очень много топлива, а газ, образующийся в результате сгорания, с очень высокой начальной скоростью выходит из задней части самолета, тем самым, толкая самолет вперед. Мощность авиадвигателей позволяет такую громадину как современный пассажирский самолет разгонять на очень большую скорость, до 300 км/час. Так самолет набирает скорость. А когда набрана определенная скорость, возникает сила, которая давит на самолет снизу вверх.

Как это происходит? Из-за специальной конструкции крыльев. Снизу крыло ровное, а сверху — выпуклое. Это означает: когда самолет набрал большую скорость по взлетной полосе, воздух, который «обтекает» верхнюю выпуклую часть крыльев самолета, за единицу времени проходит чуть больший путь, чем воздух, обтекающий нижнюю часть крыла. То есть, обтекающий крыло самолета воздух сверху движется (относительно самолета) с большей скоростью, чем тот воздух, который обтекает крыло самолета снизу.

Воздух толкает самолет вверх

И именно из-за этого возникает такой эффект, когда давление на крыло снизу сильнее, чем на крыло сверху. Потому что, чем больше скорость движения воздуха, тем ниже давление. В итоге, чем быстрее самолет разгоняется по взлетной полосе, тем сильнее воздух начинает давить на самолет снизу вверх. При наборе определенной скорости это давление становится достаточным, чтоб самолет оттолкнулся от земли, и далее уже в воздухе продолжал набор высоты. У разных моделей самолетов эта скорость разная.

Почему самолеты не летают через полюса

На самом деле, кроссполярные пассажирские рейсы, хоть их количество и невелико, на данный момент регулярно осуществляются. По крайней мере, воздушные трассы через Северный Полюс были открыты в 2001 году, и на данный момент их успешно используют авиаперевозчики США, Канады, Китая, Кореи, Сингапура, Таиланда и ОАЭ. Однако, есть два момента, осложняющих развитие подобных маршрутов:

  • сложности с радиолокационной поддержкой диспетчерской службой на всем протяжении маршрута;
  • недостаточное техническое оснащение и плохое аэронавигационное обслуживание в Сибирской части Евразийского континента.

Возможно, дальнейший технический прогресс и выполнение масштабных проектов по строительству аэронавигационных станций в местах прохождения маршрутов сделают полеты через Северный Полюс более распространенным явлением.

Экономический смысл в этом есть: подсчитано, что кроссполярные перелеты позволят исключить пересадки и на 25% сократить полетное время на маршрутах, соединяющих Северную Америку и Азию. Южный Полюс в свою очередь удален от основных воздушных магистралей, и рациональных причин на прохождение регулярных рейсов вблизи него нет.

Как управляют самолетом

Сегодня большинство авиалайнеров во время полета управляются мощными компьютерами, а в обязанности пилотов входит контроль за системами и осуществление посадки-взлета. Несмотря на высокий уровень развития технологий, на этих отрезках автоматика не может заменить человека ввиду того, что наша реакция гораздо быстрее, но главное, мы можем анализировать свои действия и их последствия. Управлять многотонной летающей машиной совсем не то же самое, что автомобилем — все намного сложнее. Итак, вот некоторые элементы управления:

  • Штурвал — манипуляции с ним отражаются на поведении машины. «От себя» — вниз, а «на себя» — соответственно, вверх. Повороты влево и вправо создают необходимый угол крена.
  • Киль — расположен в хвостовой части, а «крылышки» под ним предназначены для устойчивости машины. Обе части позволяют корректировать полет посредством рулей высоты и направления.
  • Рычаг мощности — перемещая его, пилот регулирует мощность тяги, что позволяет набирать либо снижать скорость.

На какой скорости садится самолет

Посадочная скорость, также, как и взлетная, может сильно отличаться в зависимости от моделей воздушного судна, площади его крыла, веса, ветра и других факторов. В среднем, она варьируется от 220 до 250 километров в час.

Обратите внимание: скорость в воздухе (в том числе и посадочная скорость) считается не относительно земли, а относительно воздуха. Если вы засечете ее по GPS или ГЛОНАСС, то приборы покажут вам порядка 170-180 километров в час, но фактическая будет в указанном выше интервале

Надеемся, что данная информация ответит на ваши вопросы, и летать вам станет проще. Напомним, что самолет — самый безопасный вид транспорта!

Почему поднимается дирижабль

Мы знаем, что аэростаты и дирижабли поднимает в воздух сила Архимеда. Закон Архимеда для газов гласит: «На тело, погружённое в газ, действует выталкивающая сила, равная силе тяжести вытесненного этим телом газа». Эта сила противоположна по направлению силе тяжести. То есть, сила Архимеда направлена вверх.

Если сила тяжести равна силе Архимеда, то тело находится в равновесии. Если же сила Архимеда больше силы тяжести, то тело поднимается в воздухе. Так как баллоны аэростатов и дирижаблей заполняют газом, который легче воздуха, то сила Архимеда выталкивает их вверх. Таким образом, сила Архимеда является подъёмной силой для летательных аппаратов легче воздуха.

Но сила тяжести самолёта значительно превышает силу Архимеда. Следовательно, поднять самолёт в воздух она не может. Так почему же он всё-таки взлетает?

Основной принцип

В теории нет ничего сложного в устройстве самолета, благодаря которому тот взлетает в воздух. Главный элемент лайнера – это его двигатели, которые обеспечивают большую тягу, позволяющую разогнать машину до огромных скоростей. Именно за счет большой скорости самолет и взлетает. Итак, два двигателя разгоняют машину на взлетно-посадочной полосе, из-за чего самолет набирает высокую скорость. Затем закрылки на крыльях опускаются вниз. Они воспринимают большую нагрузку встречного воздуха, из-за чего возникает большая подъемная сила, которая и отрывает лайнер от земли.

То есть, два двигателя разгоняют самолет, закрылки на крыльях позволяют изменить вектор тяги и направить лайнер вверх. Вот так в двух словах можно описать устройство самолета для чайников.

За счет чего летают самолеты

Все дело в особом профиле крыла — оно снизу плоское, а сверху наоборот — выпуклое. Выходит, что встречный поток воздуха расслаивается надвое, при этом верхний проходит несколько больший путь, чем нижний. Согласно физике, при повышении скорости в струе газа, его давление понижается, а значит, он становится более разряженным. Следовательно, давление над крылом несколько меньше, что и обусловливает его подъемную силу, которой вполне можно управлять, если добавить в конструкцию некоторые элементы. Например, сегодня у самолета крыло имеет такие сегменты:

  • стационарная часть;
  • поворотные элероны;
  • закрылки.

Благодаря последним изменяется подъемное усилие, без чего и взлет, и посадка были бы совершенно невозможны. В воздухе их положение соответствуют профилю крыльев, а когда необходимо совершить маневр — они отклоняются вверх или вниз.

Полёт

Самолёт держится в воздухе благодаря действующей на него «подъёмной силе», которая возникает только в движении, которое обеспечивают двигатели, закреплённые на крыльях или фюзеляже.

  • Реактивные двигатели выбрасывают назад струю продуктов сгорания керосина или другого авиационного топлива, толкая самолёт вперёд.
  • Лопасти винтового двигателя как бы ввинчиваются в воздух и тянут самолёт за собой.

Подъемная сила

Подъемная сила возникает, когда набегающий поток воздуха обтекает крыло. Благодаря особой форме сечения крыла, часть потока над крылом имеет большую скорость, чем поток под крылом. Это происходит потому, что верхняя поверхность крыла выпуклая, в отличие от плоской нижней. В итоге воздуху, обтекающему крыло сверху, приходится пройти больший путь, соответственно с большей скоростью. А чем больше скорость потока, тем меньше давление в нём, и наоборот. Чем меньше скорость — тем больше давление.

5c271bbb537523e8338de87c5aeee624.jpg

В 1838 году, когда ещё аэродинамики, как таковой, не существовало, швейцарский физик Даниил Бернулли описал это явление, сформулировав закон, названный по его имени. Бернулли, правда, описывал течение потоков жидкости, но с возникновением и развитием авиации, его открытие оказалось как нельзя более кстати. Давление под крылом превышает давление сверху и выталкивает крыло, а с ним и самолёт, вверх.

Другое слагаемое подъёмной силы — так называемый «угол атаки». Крыло располагается под острым углом к встречному потоку воздуха, благодаря чему давление под крылом выше, чем сверху.

С какой скоростью летают самолёты

Для возникновения подъёмной силы необходима определённая, и довольно высокая, скорость движения. Различают минимальную скорость, она необходима для отрыва от земли, максимальную, и крейсерскую, на которой самолёт летит большую часть маршрута, она составляет около 80% максимальной. Крейсерская скорость современных пассажирских лайнеров 850-950 км в час.

Ещё есть понятие путевой скорости, которая складывается из собственной скорости самолёта и скорости воздушных потоков, которые ему приходится преодолевать. Именно, исходя из неё, рассчитывают продолжительность рейса.

Скорость, необходимая для взлёта зависит от массы самолёта, и для современных пассажирских судов составляет от 180 до 280 км в час. Примерно на такой же скорости производится посадка.

Высота

Высота полёта тоже выбирается не произвольно, а определяется большим количеством факторов, соображениями экономии топлива и безопасности.

У поверхности земли воздух более плотный, соответственно, он оказывает большое сопротивление движению, вызывая повышенный расход топлива. С увеличением высоты воздух становится более разряжённым, и сопротивление уменьшается. Оптимальной высотой для полёта считается высота около 10 000 метров. Расход топлива при этом минимален.

ad232d0c21aad32754edbbba65b22c1f.jpg

Ещё одним существенным плюсом полётов на больших высотах является отсутствие здесь птиц, столкновения с которыми не раз приводили к катастрофам.

Подниматься выше 12 000-13 000 метров гражданские самолёты не могут, так как слишком сильное разряжение препятствует нормальной работе двигателей.

Управление самолётом

Управление самолётом осуществляется путём увеличения или уменьшения тяги двигателя. При этом изменяется скорость, соответственно подъёмная сила и высота полёта. Для боле тонкого управления процессами изменения высоты и поворотов служат средства механизации крыла и рули, находящиеся на хвостовом оперении.

Взлёт и посадка

Чтобы подъёмная сила стала достаточной, для отрыва самолёта от земли, он должен развить достаточную скорость. Для этого служат взлётно-посадочные полосы. Для тяжёлых пассажирских или транспортных самолётов нужны длинные ВПП, длиной 3-4 километра.

За состоянием полос тщательно следят аэродромные службы, поддерживая их в идеально чистом состоянии, так как инородные предметы, попадая в двигатель, могут привести к аварии, а снег и лёд на полосе представляют большую опасность при взлёте и посадке.

При разбеге самолёта наступает момент, после которого отменить взлёт уже нельзя, так как скорость становится настолько велика, что самолёт уже не сможет остановиться в пределах полосы. Это так и называется — «скорость принятия решения».

Посадка — очень ответственный момент полёта, лётчики постепенно сбрасывают скорость, вследствие чего уменьшается подъёмная сила и самолёт снижается. Перед самой землёй скорость уже такая низкая, что на крыльях выпускаются закрылки, которые несколько увеличивают подъёмную силу и позволяют мягко посадить самолёт.

Таким образом, как бы странно нам это не казалось, самолёты летают, причём в строгом соответствии с законами физики.

Почему самолеты летают низко

Если исключить очевидные набор высоты и заход на посадку, в повседневной жизни мы чаще наблюдаем на небольшой высоте самолеты военно-воздушных сил, МЧС или летательные аппараты сельскохозяйственного назначения. При этом есть причина, по которой пассажирские лайнеры могут в течении долгого времени совершать полет сравнительно низко. Она как правило связана с необходимостью незапланированной посадки.

В авиации существует такой параметр, как максимальная посадочная масса, которую выдерживает шасси при посадке. Обычно топливо в самолет заливается на прохождение расстояния по маршруту с навигационным запасом. В случае необходимости посадки самолета раньше запланированного, когда топлива на борту еще много и максимальная посадочная масса выше допустимого значения, излишки топлива «сжигают» полетом на низких высотах. Если этого не сделать, шасси просто не выдержит посадки.

Взлет, посадка и маневрирование

Итак, чтобы взлететь, необходимо опустить хвостовую часть, то есть создать такое положение машины, при котором угол атаки возрастет. Что это такое? Это угол между встречными воздушными потоками и продольным направлением тела, в данном случае — хордой крыла. Пилот тянет руль к себе, поднимая закрылок, что увеличивает угол атаки, а значит, увеличивается подъемная способность крыла. Для снижения руль приводится в положение «от себя», следовательно, хвостовая часть приподнимается вверх — начинается снижение. Элероны же дают возможность наклонять машину влево и вправо, при соответствующем положении штурвала.

Теорема Жуковского

0fef4f2c8fbef5e5d8a0cef1b650042e.jpg

Как образуется подъёмная сила крыла, впервые объяснил русский учёный Николай Егорович Жуковский, которого называют отцом русской авиации. В 1904 г. он сформулировал теорему о подъёмной силе тела, которое обтекается плоскопараалельным потоком идеальной жидкости или газа.

Жуковский ввёл понятие циркуляции скорости потока, что позволило учесть скос потока и получить более точное значение подъёмной силы.

Подъемная сила крыла бесконечного размаха равна произведению плотности газа (жидкости), скорости газа (жидкости), циркуляции скорости потока и длины выделенного отрезка крыла. Направление действия подъемной силы получается поворотом вектора скорости набегающего потока на прямой угол против циркуляции.

где:

 – подъёмная сила

 – плотность среды

 — скорость потока на бесконечности

 — циркуляция скорости потока(вектор направлен перпендикулярно плоскости профиля, направление вектора зависит от направления циркуляции),

 — длина отрезка крыла (перпендикулярно плоскости профиля).

Величина подъёмной силы зависит от многих факторов: угла атаки, плотности и скорости воздушного потока, геометрии крыла и др.

Теорема Жуковского положена в основу современной теории крыла.

Бизнес и финансы

БизнесБанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги – контрольЦенные бумаги – оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитПромышленностьМеталлургияНефтьСельское хозяйствоЭнергетикаСтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьер

Фюзеляж

А теперь рассмотрим основные конструктивные части лайнера. Начнем с фюзеляжа.

1363f851ef34c372ed2f99f47220425f.jpg

Фюзеляж – это корпус, который состоит из разных частей. В нем размещаются пассажиры, экипаж, здесь есть багажный отсек, куда складываются вещи. Фюзеляж – это достаточно сложная система, которая должна быть прочной и герметичной. Если его обшивка в полете разрушается, то это может привести к человеческим жертвам, поэтому обеспечению герметичности фюзеляжа уделяют много внимания при конструировании судна. Если сильно обобщить, то это герметичная “коробка”, где находятся пассажиры, оборудование, груз. Именно эту ее и нужно из точки “А” перегнать в точку “Б”.

Почему самолеты летают на высоте 10000 метров

Согласно бытующему мнению, самолеты летают на высоте примерно в 10 км. Это не совсем так, для каждого полета существует своя оптимальная высота, которая зависит от типа самолета и его характеристик, удельного веса воздушного судна и метеоусловий в текущий момент.

Зачастую ее выбор осуществляется даже не экипажем корабля, а диспетчерской службой на земле. Кроме того, нужно отметить, что в гражданском воздухоплавании используется правило «четности-нечетности»: движущиеся на запад, северо-запад и юго-запад лайнеры придерживаются четной высоты кратной тысячам метров (10 тысяч метров), а направляющиеся в другие стороны – нечетной (9 или 11 тысяч метров).

Первый самолет братьев Райт поднимался в воздух всего на 3 метра, современные самые легкие самолеты совершают полет на высоте до 2 километров, а для истребителей последнего поколения оптимальная высота – примерно 20 тысяч метров.

Однако, для большинства пассажирских лайнеров идеальная высота полета находится между 9 и 12 тысячами метров над поверхностью, то есть действительно можно говорить о 10 километрах, как средней высоте полета в гражданской авиации. Такой выбор обусловлен несколькими причинами:

  • банальная экономия – на большей высоте меньшая плотность воздуха, меньшее встречное сопротивление, а значит меньше и расход топлива;
  • на этой высоте воздушное судно меньше зависит от атмосферных явлений;
  • температура на 10 тысячах метров – около -50 градусов по Цельсию — хорошо подходит для охлаждения реактивных двигателей лайнеров;
  • большая высота обеспечивает больше времени на принятия решений экипажем, а также выполнение манёвров и планирование в случае возникновения чрезвычайной ситуации на борту;
  • на таких высотах отсутствует вероятность столкновения со стаями птиц, которое может привести к внештатной ситуации.

У каждого самолета существует крайнее значение высоты, при котором давление воздуха способно создавать подъемную силу. Выше 12 тысяч метров воздух становится слишком разреженным для пассажирского лайнера со средними характеристиками. Мощность двигателя падает, а объем расхода топлива резко увеличивается, а самолет начинает «заваливаться».

Как управляют самолетом

Как управляют самолетом?

Крыла и двигателей недостаточно для управляемого, безопасного и комфортного полета. Самолетом нужно управлять, при этом точность управления более всего нужна во время посадки. Летчики называют посадку управляемым падением – скорость самолета снижается так, что он начинает терять высоту. При определенной скорости это падение может быть очень плавным, приводящим к мягкому касанию колесами шасси полосы.

Управление самолетом совершенно не похоже на управление автомобилем. Штурвал пилота предназначен для отклонения вверх и вниз и создания крена. “На себя” – это набор высоты. “От себя” – это снижение, пикирование. Для того, чтобы повернуть, изменить курс, нужно нажать на одну из педалей и штурвалом наклонить самолет в сторону поворота… Кстати, на языке пилотов это называется “разворот” или “вираж”.

Для разворота и стабилизации полета в хвосте самолета расположен вертикальный киль. А находящиеся под ним и над ним небольшие “крылья” – это горизонтальные стабилизаторы, которые не позволяют огромной машине бесконтрольно подниматься и опускаться. На стабилизаторах для управления имеются подвижные плоскости – рули высоты.

Для управления двигателями между креслами пилотов находятся рычаги – при взлете они переводятся полностью вперед, на максимальную тягу, это взлетный режим, необходимый для набора взлетной скорости. При посадке рычаги отводят полностью назад – в режим минимальной тяги.

Многие пассажиры с интересом смотрят, как перед посадкой задняя часть огромного крыла вдруг опускается вниз. Это закрылки, “механизация” крыла, которая выполняет несколько задач. При снижении полностью выпущенная механизация тормозит самолет, чтобы не дать ему слишком разогнаться. При посадке, когда скорость очень невелика, закрылки создают дополнительную подъемную силу для плавной потери высоты. При взлете они помогают основному крылу удерживать машину в воздухе.

Чего не нужно бояться в полете

Есть несколько моментов полета, способных напугать пассажира – это турбулентности, прохождение через облака и хорошо видимые колебания консолей крыла. Но это совершенно не опасно – конструкция самолета рассчитана на огромные нагрузки, гораздо больше тех, что возникают при “болтанке”. К подрагиванию консолей следует относиться спокойно – это допустимая гибкость конструкции, а полет в облаках обеспечивается приборами.

Самолет не боится удара молнии. Атмосферный разряд протекает только по его поверхности, поэтому могут не минуту отключиться какие-то приборы. Они снова включаются, и полет продолжается в обычном режиме. А неприятности в полете могут доставить птицы, грозовые облака, их называют “фронты”, и сильный боковой ветер при посадке.
Попадание птицы в двигатель останавливает его, в грозовых облаках, которые лайнеры стараются обойти, очень мощные воздушные потоки, способные опрокинуть самолет, а боковой ветер сдувает самолет с полосы.

Современные лайнеры – это настоящие воздушные корабли, устойчивые и полностью автоматизированные. Они летают по строго определенным маршрутам, “коридорам” пролета, под постоянным контролем с земли, а для того, чтобы самолеты расходились, имеются эшелоны – заданные для полета высоты. Они никогда не пересекаются. Но организация полетов и управление воздушным движением – это особая, очень большая и интересная тема.

Rate this item:1.002.003.004.005.00Submit Rating

Рейтинг: 4.7/5. Из 20 голосов.

Please wait…

Как летает самолёт

Самолёт может взлететь только в том случае, если подъёмная сила больше его веса. Скорость он развивает с помощью двигателей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх.

Если подъёмная сила и вес самолёта равны, то он летит горизонтально. Двигатели самолёта создают тягу – силу, направление которой совпадает с направлением движения самолёта и противоположно направлению лобового сопротивления. Тяга толкает самолёт сквозь воздушную среду. При горизонтальном полёте с постоянной скоростью тяга и лобовое сопротивление уравновешены. Если увеличить тягу, самолёт начнёт ускоряться. Но и лобовое сопротивление увеличится тоже. И вскоре они снова уравновесятся. И самолёт будет лететь с постоянной, но большей скоростью.

Если скорость уменьшается, то становится меньше и подъёмная сила, и самолёт начинает снижаться.

  • < Назад

Самолеты летают по законам физики

В основе аэродинамики как науки заложена теорема Николая Егоровича Жуковского, выдающегося русского ученого, основателя аэродинамики, которая была сформулирована еще в 1904 году. Спустя год, в ноябре 1905 года Жуковский изложил свою теорию создания подъемной силы крыла летательного аппарата на заседании Математического общества.

Для того чтобы подъемная сила смогла поднять в воздух современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч.

Почему самолеты летают с разной скоростью?

От требуемой скорости самолета зависит и его размер. Площадь крыльев медленных транспортных самолетов должна быть достаточно большой, так как подъемная сила крыла и скорость, развиваемая самолетом, прямо пропорциональны. Большая площадь крыльев у медленных самолетов обусловлена тем, что при достаточно малых скоростях подъемная сила невелика.

Скоростные самолеты, как правило, имеют гораздо меньшие по размерам крылья, обладающие при этом достаточной подъемной силой. Чем меньше плотность воздуха, тем меньшей становится подъемная сила крыла, поэтому на большой высоте скорость самолета должна быть выше, чем при полете на малой высоте.

Почему самолеты летают так высоко?

Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Оставить комментарий

Ваш e-mail не будет опубликован.