Устройство крыла самолета

Взлётно-посадочные системы 2280

Взлёт и посадку считают ответственными периодами при эксплуатации самолёта. В этот период возникают максимальные нагрузки на всю конструкцию. Гарантировать приемлемый разгон для поднятия в небо и мягкое касание поверхности посадочной полосы могут только надёжно сконструированные стойки шасси. В полете они служат дополнительным элементом придания жесткости крыльям.

Конструкция наиболее распространённых моделей шасси представлена следующими элементами:

  • подкос складной, компенсирующий лотовые нагрузки;
  • амортизатор (группа), обеспечивает плавность хода самолёта при движении по взлетно-посадочной полосе, компенсирует удары во время контакта с землёй, может устанавливаться в комплекте с демпферами-стабилизаторами;
  • раскосы, выполняющие роль усилителя жесткости конструкции, могут называться стержнями, располагаются диагонально по отношению к стойке;
  • траверсы, крепящиеся к конструкции фюзеляжа и крыльям стойки шасси;
  • механизм ориентирования – для управления направлением движения на полосе;
  • замочные системы, обеспечивающие крепление стойки в необходимом положении;
  • цилиндры, предназначенные для выпуска и убирания шасси.

Стойка шасси самолёта

Сколько колес размещено у самолета? Количество колёс определяется в зависимости от модели, веса и назначения воздушного судна. Наиболее распространённым считают размещение двух основных стоек с двумя колёсами. Более тяжёлые модели – трёх стоечные (размещены под носовой частью и крыльях), четырёх стоечные – две основные и две дополнительные опорные.

Геометрические характеристики крыла

Геометрические характеристики — перечень параметров, понятий и терминов используемых для проектирования крыла и определения наименований его элементов:

Размах крыла (L) — расстояние между двумя плоскостями, параллельными базовой плоскости самолёта и касающимися концов крыла.
Хорда несущей поверхности крыла — отрезок прямой взятый в одном из сечений крыла плоскостью, параллельной базовой плоскости самолёта, и ограниченный передней и задней точками профиля.
Местная хорда крыла (b(z)) — отрезок прямой на профиле крыла, соединяющий переднюю и заднюю точки контура профиля в заданном сечении по размаху крыла.
Длина местной хорды крыла (b(z)) — длина отрезка линии проходящей через заднюю и переднюю точки аэродинамического профиля в местном сечении по размаху крыла.
Центральная хорда крыла (b) — местная хорда крыла в базовой плоскости самолёта, получаемая продолжением линии передней и задней кромок крыла до пересечения с этой плоскостью.
Длина центральной хорды крыла (b) — длина отрезка между точками пересечения передней и задней кромок крыла базовой плоскостью самолёта.
Бортовая хорда крыла (bб) — хорда по линии разъёма крыла и фюзеляжа в сечении крыла, параллельном базовой плоскости самолёта.
Концевая хорда крыла (bк) — хорда в концевом сечении крыла, параллельном базовой плоскости самолёта.
Базовая плоскость крыла — плоскость содержащая центральную хорду крыла и перпендикулярная базовой плоскости самолёта.
Площадь крыла (S) — площадь проекции крыла на базовую плоскость крыла, включая подфюзеляжную часть крыла и наплывы крыла.
Контрольное сечение крыла — условное сечение крыла плоскостью, параллельной базовой плоскости крыла (z = const).
Кривизна крыла — переменное отклонение средней линии аэродинамических профилей от их хорд; характеризуется относительной вогнутостью профиля (отношением максимального отклонения средней линии от хорды к длине хорды).
Срединная поверхность крыла — образуемая совокупностью всех средних линий профилей крыла по размаху; обычно задаётся некоторыми законами изменения вогнутости профиля и крутки крыла по размаху; при постоянной величине крутки крыла и нулевой кривизне профилей из которых составлено крыло, срединная поверхность представляет собой плоскость.
Удлинение крыла (λ) — относительный геометрический параметр, определяемый как отношение: λ = L²/S;
Сужение крыла (η) — относительный геометрический параметр крыла, определяемый как отношение: η = b/bк;
Геометрическая крутка крыла — поворачивание хорд крыла по его размаху на некоторые углы (по закону φкр = f(z)), которые отсчитываются от плоскости, за которую обычно принимают базовую плоскость крыла (при условии если угол заклинения крыла по бортовой хорде равен нулю). Применяется для улучшения аэродинамических характеристик, устойчивости и управляемости на крейсерском режиме полёта и при выходе на большие углы атаки.
Местный угол геометрической крутки крыла (φкр(z)) — угол между местной хордой крыла и его базовой плоскостью, причём угол φкр(z) считается положительным, когда передняя точка местной хорды выше задней очки той же хорды крыла.

Механизация крыла самолета

Крыло самолета — сложная инженерная конструкция, состоящая из множества деталей. Для создания силы, способной поднять самолет в воздух, крылу придается аэродинамическая форма.

В разрезе классическое крыло напоминает вытянутую каплю с плоской нижней частью. Благодаря такой форме, набегающий во время полета аэроплана воздушный поток, сжимается в нижней поверхности крыла, а в верхней образуется разреженное пространство. Сформировавшиеся при этом силы начинают толкать крыло в сторону разреженного пространства, то есть вверх. Таким образом, создается подъемная сила.

Но эти условия полета формируются только при достаточной скорости. Поэтому все самолеты (кроме самолетов с вертикальным взлетом) сначала разгоняются. Им нужно набрать определенную скорость, чтобы оторваться от взлетной полосы и начать набор высоты. Это так называемая скорость отрыва. Она для каждого самолета своя, и даже для одного и того же самолета, но с разной взлетной массой, она тоже будет отличаться. И только после набора этой скорости, крыло начинает поддерживать самолет и не дает ему упасть.

На этапе разгона и набора высоты, для создания большей силы подъема, крыло должно иметь, как можно большую площадь.

Также большая площадь необходима для снижения и посадки аэроплана. Однако в прямолинейном полете, желательно чтобы площадь крыла была как можно меньше с целью создания наименьшего сопротивления. Все эти противоречивые требования «уживаются» в конструкции крыла при помощи специальных механических устройств.

Механизация крыла самолета подразделяется на механические устройства, расположенные на задней и передней кромках крыла.

Основное предназначение этих устройств – управление подъемной силой и сопротивлением самолета, преимущественно когда самолет взлетает или садится. Средства механизации крыла должны отвечать довольно жестким требованиям, и, в первую очередь, к ним относятся слаженность действия механизмов и безотказность их работы. Механизация крыла самолета конструкция и назначение отдельных его составляющих частей представлены ниже.

Механизация крыла на примере Боинг-737

Дополнительные второстепенные функции

Дополнительные второстепенные особенности могут быть применены к существующей аэродинамической поверхности, такой как основное крыло:

Высокий подъем

Устройства с высоким подъемом

Устройства с высоким подъемом поддерживают подъемную силу на низких скоростях и задерживают срыв, чтобы обеспечить более низкие скорости взлета и посадки:

  • Предкрылок и прорезь : предкрылок передней кромки – это небольшая аэродинамическая крыша, простирающаяся перед основной передней кромкой. Зазор по размаху позади него образует прорезь на передней кромке. Воздух, проходящий через прорезь, отклоняется назад предкрылком и обтекает крыло, позволяя летательному аппарату летать с более низкими скоростями воздуха без разделения потока или сваливания. Рейка может быть фиксированной или выдвижной.
  • Закрылок : шарнирная аэродинамическая поверхность, обычно на задней кромке, которая поворачивается вниз для создания дополнительной подъемной силы и сопротивления. Типы включают простой, щелевой и разделенный. Некоторые, такие как , также выдвигаются назад, чтобы увеличить площадь крыла. Лоскут Крюгер является ведущим краем устройства.
  • Манжета : удлинение передней кромки, изменяющее сечение крыла, как правило, для улучшения характеристик на низких скоростях.

Управление потоком по диапазону

Устройство контроля потока

На стреловидном крыле воздух имеет тенденцию течь как вбок, так и назад, и уменьшение этого может повысить эффективность крыла:

  • Ограждение крыла : плоская пластина, идущая вдоль хорды крыла и на небольшое расстояние по вертикали. Используется для управления потоком воздуха по размаху крыла.
  • Зубчатый передний край : создает резкий разрыв воздушного потока над крылом, нарушая поток по размаху.
  • Зубчатая передняя кромка : действует как клык.

Создание вихря

Вихревые устройства

Вихревые устройства поддерживают воздушный поток на низких скоростях и задерживают срыв, создавая вихрь, который повторно заряжает пограничный слой рядом с крылом.

  • Генератор вихрей : небольшой треугольный выступ на верхней передней поверхности крыла; обычно несколько из них расположены по размаху крыла. Генераторы вихрей создают дополнительное сопротивление на всех скоростях.
  • Вортилон : плоская пластина, прикрепленная к нижней части крыла возле его внешней передней кромки, примерно параллельная нормальному воздушному потоку. На низких скоростях концевые эффекты вызывают локальный поток по размаху, который отклоняется вихрем, образуя вихрь, проходящий вверх и над крылом.
  • Переднее корневое расширение (LERX) : создает сильный вихрь над крылом при больших углах атаки, но, в отличие от генераторов вихрей, он также может увеличивать подъемную силу при таких больших углах, создавая при этом минимальное сопротивление при горизонтальном полете.

Снижение сопротивления

Устройства для уменьшения сопротивления

  • Противоударный корпус : обтекаемая форма гондолы, добавленная к передней или задней кромке аэродинамической поверхности, чтобы задержать наступление ударного сваливания и уменьшить сопротивление трансзвуковой волны . Иногда называют морковкой Кюхемана .
  • Обтекатели различных типов, такие как блистеры, пилоны и опоры крыла, содержащие оборудование, которое не может поместиться внутри крыла, и единственная аэродинамическая цель которых – уменьшить сопротивление, создаваемое оборудованием.
  • Скругление , разновидность обтекателя: небольшое изогнутое заполнение на стыке двух поверхностей, таких как крыло и фюзеляж, плавно соединяющее их вместе, чтобы уменьшить сопротивление.

ЗАКОНЦОВКИ КРЫЛА

Законцовки крыла служат для увеличения эффективного размаха крыла, снижая лобовое сопротивление, создаваемое срывающимся с конца стреловидного крыла вихрем и, как следствие, увеличивая подъёмную силу на конце крыла. Также законцовки позволяют увеличить удлинение крыла, почти не изменяя при этом его размах.

Применение законцовок крыла позволяет улучшить топливную экономичность у самолётов, либо дальность полёта у планёров. В настоящее время одни и те же типы самолётов могут иметь разные варианты законцовок.

Вот вкратце такова механизация крыла. Именно вкратце.На самом деле эта тема намного шире.

Если хотите блеснуть эрудицией в узком кругу, знайте! у большинства современных самолетов — ОДНО крыло! А слева и справа это полуКрылья! ))

Но сегодня я итак уже слишком много занимаю Ваше внимание. Думаю, что все еще впереди

Другие статьи:

РЖД показали концепт первого российского высокоскоростного поезда (7 фото)

Роботы ушедшего столетия

Какие игрушки-роботы существовали в 80-е годы (10 фото)

10 узлов, которые пригодятся в реальной жизни (10 фото)

Другие статьи:

РЖД показали концепт первого российского высокоскоростного поезда (7 фото)

Роботы ушедшего столетия. Какие игрушки-роботы существовали в 80-е годы (10 фото)

10 узлов, которые пригодятся в реальной жизни (10 фото)

Общая информация

Люди всегда хотели быстрее ездить, быстрее летать и т. д. И, в общем-то, с самолетом это вполне получилось. В воздухе, когда аппарат уже летит, он развивает огромную скорость. Однако тут следует уточнить, что высокий показатель скорости приемлем лишь во время непосредственного полета. Во время взлета или посадки все совсем наоборот. Для того чтобы успешно поднять конструкцию в небо или же, наоборот, посадить ее, большая скорость не нужна. Причин этому несколько, но основная кроется в том, что для разгона понадобится огромная взлетная полоса.

Вторая основная причина – это предел прочности шасси самолета, который будет пройден, если взлетать таким образом. То есть в итоге получается так, что для скоростных полетов нужен один тип крыла, а для посадки и взлета – совсем другой. Что же делать в такой ситуации? Как создать у одного и того же самолета две принципиально разных по своей конструкции пары крыльев? Ответ – никак. Именно такое противоречие и подтолкнуло людей к новому изобретению, которое назвали механизацией крыла.

Закрылки в World of warplanes

Что такое закрылки?

Закрылки — это специальные устройства на крыле самолета, необходимые для регулирования его несущих свойств.

Закрылки представляют собой симметрично расположенные отклоняемые поверхности. Расположены закрылки на задней части крыла. В убранном состоянии закрылки являются продолжением крыла. В выпущенном положении они изменяют профиль крыла.

https://youtube.com/watch?v=GCYP21wePdUVideo can’t be loaded because JavaScript is disabled: Как летает самолет? (https://youtube.com/watch?v=GCYP21wePdU)

Посмотрим, как выглядят закрылки в убранном и выпущенном состоянии.

Закрылки в убранном состоянии составляют часть профиля крыла.

Закрылки выпущены

В выпущенном состоянии закрылки значительно изменяют кривизну крыла, в результате чего возрастает сила лобового сопротивления и подъемная сила.

При выпуске закрылков увеличивается кривизна профиля и площадь поверхности крыла. Так как площадь поверхности крыла увеличилась — увеличивается и несущая способность крыла, что позволяет самолету лететь на меньшей скорости без сваливания.

Кроме того, при выпуске закрылков увеличивается аэродинамическое сопротивление, что вызывает снижение скорости.

Закрылки, как правило, используются для улучшения несущей способности крыла во время взлёта, посадки, набора высоты и снижения, при полёте на малых скоростях.

Как пользоваться закрылками в авиасимуляторах

В авиасимулторах, например в War Thunder используется несколько различных положений закрылков — взлетное, посадочное, боевое.

В аркадном симуляторе World of warplanes закрылки могут находиться в двух состояниях — убранном и выпущенном. Клавишу для выпуска закрылков вы можете назначить в настройках игры.

Выпуск закрылков в World of warplanes, как и в реальной жизни, увеличит аэродинамическое сопротивление крыла, и, как следствие, скорость самолета начнет падать. Этот эффект удобно использовать, когда нужно снизить скорость полета, например при штурмовке наземных целей или на выходе из пикирования.

Как было сказано ранее, выпуск закрылок позволяет увеличить несущую способность крыла, и позволит лететь на малой скорости без сваливания, что оказывается полезным для штурмовиков, атакующих на низкой скорости наземные цели.

Также, выпуск закрылков позволяет несколько улучшить маневренность самолета в бою. Для этого существует специальное — боевое положение закрылок, в World of warplanes ситуация несколько упрощена, предусмотрен лишь один вариант — закрылки выпущены. Выпуск закрылок в вираже может сделать выполнение виража более резким, но помните, что закрылки тормозят ваш самолет, поэтому следите за скоростью, управляйте тягой двигателя.

И главное закрылки в WoWp нужны лишь в некоторых боевых ситуациях, о которых рассказано выше. Не забывайте отпускать кнопку — и убирать закрылки.

Механизация крыла

Основные части механизации крыла Основная статья: Механизация крыла

  • 1 — законцовка крыла
  • 2, 3 — корневые элероны
  • 4 — обтекатели механизма привода закрылков
  • 5, 6 — предкрылки
  • 7 — корневой (или внутренний) трёхщелевой закрылок
  • 8 — внешний трёхщелевой закрылок
  • 9 — интерцептор
  • 10 — интерцептор/спойлер

Складывающееся крыло

Сложенная правая консоль крыла Як-38 К конструкции со складывающимся крылом прибегают в том случае, когда хотят уменьшить габариты при стоянке воздушного судна. Наиболее часто такое применение встречается в палубной авиации (Су-33, Як-38, F-18, Bell V-22 Osprey), но и рассматривается иногда для пассажирских ВС (КР-860).

Этот раздел не завершён.

Вы поможете проекту, исправив и дополнив его.

См. также: Палубная авиация

Выбор профиля

Разнообразие летательных аппаратов, типы их двигательных установок и их назначение требуют тщательного подхода к выбору профиля крыла самолета. При проектировании новых летательных аппаратов обычно рассматривается несколько альтернатив. Чем больше относительная толщина крыла, тем больше сопротивление. Но при тонких крыльях большой длины сложно обеспечить надлежащую прочность конструкции.

Отдельно стоит вопрос по сверхзвуковым машинам, требующим особого подхода. Совершенно естественно, что профиль крыла самолета Ан-2 («кукурузник») будет отличаться от профиля истребителя и пассажирского лайнера. Симметричный и S-образный профили крыла создают меньшую подъемную силу, но отличаются стабильностью, тонкое крыло с небольшим изгибом подходит для скоростных спортивных машин и истребителей, а профилем крыла с наибольшей подъемной силой можно назвать толстое крыло с большим изгибом, применяемое на больших пассажирских самолетах. Сверхзвуковые самолеты оснащаются крыльями, имеющими чечевицеобразный профиль, а для гиперзвуковых применяются ромбовидные и клиновидные профили. Следует иметь в виду, что создав самый лучший профиль, можно потерять все его преимущества только из-за некачественной обработки поверхности панелей крыла или неудачной конструкции самолета.

Механизмы задней кромки крыла

при взлете и посадке самолета, для увеличения площади крыла и изменения его аэродинамических характеристик, применяются щитки и закрылки.

Они представляют собой выдвижные или поворотные плоскости. Обыкновенные щитки просто отклоняются вниз при помощи поворотного механизма. Выдвижные щитки, вначале выдвигаются назад за плоскость крыла, а затем наклоняются вниз. Закрылки подразделяются на обыкновенные и щелевые.

Обыкновенные закрылки тоже просто отклоняются вниз. Обыкновенные щитки и закрылки при отклонениях не имеют зазора между крылом. Щелевые закрылки в рабочем положении образуют зазор между своим корпусом и крылом. За счет этого зазора, области низкого и высокого давления в верхней и нижней поверхности крыла сообщаются между собой. Это способствует равномерному обтеканию крыла воздухом, предотвращает срывы потока и падение подъемной силы.

Выпущенные закрылки (Фаулера) самолета ТУ-154

Щелевые закрылки, так же как и крыло подвергаются скоростному напору воздуха и поэтому имеют аэродинамический профиль.

Они подразделяются на однощелевые и многощелевые. Однощелевые закрылки представляют собой простую однопрофильную конструкцию и просто отклоняются вниз, или выдвигаются назад из крыла, а затем отклоняются вниз.

Многощелевые закрылки имеют сложную многоступенчатую многопрофильную (до 3-х профилей) конструкцию с механизмом выдвижения из крыла. Каждый профиль многоступенчатой конструкции отклоняется на свой угол. При опускании закрылков и щитков изменяется аэродинамика крыла, а при их выдвижении увеличивается его площадь. Все эти действия способствуют увеличению подъемной силы крыла.

Простой (поворотный) закрылок

Краткая история создания автопилота

Первый автопилот в мире был создан еще в далеком 1912 году. Изобретение принадлежит американской компании Sperry Corporation, которая смогла создать систему, удерживающую самолет на заданной траектории, при этом стабилизируя крен. Это было достигнуто за счет связи высотометра и компаса с рулями направления и высоты. Связь была настроена за счет использования блока и гидравлического привода.

На схеме показано, как работает типичный автопилот.

Заранее рассчитанные параметры полета вводятся в компьютеры самолета (1).

После взлета автопилот вступает в действие.

Два дисплея(2)показывают положение самолета, его предполагаемый маршрут и высоту.

Изменение положения маленьких заслонок(3) на наружной поверхности самолета оповещает компьютеры о малейшем изменении в ориентации самолета.

Для определения положения используется глобальная система навигации (ГСН) (4).

Приемник расположен на верхней части корпуса (5).

Компьютеры следят за маршрутом и автоматические производят необходимые изменения посредством сервомеханизмов (6),

которые управляют рулем (7),

рулями высоты (8),

элеронами (9),

закрылками (10)

и настройкой дросселей двигателей (11)

При необходимости пилот может в любой момент отключить автопилот и перейти к ручному управлению (12)

Начиная с 30-х годов 20 века, автопилотами начали оснащать некоторые пассажирские авиалайнеры. Новый виток в развитие автоматических систем управления внесла Вторая мировая война, которая требовала подобных технологий для дальних бомбардировщиков. Впервые полностью автоматический полет  через Атлантику, включая посадку и взлет, осуществил самолет C-54, принадлежавший США. Это произошло в 1947 году.

Современный этап развития автоматизированных систем управления самолетами достиг качественно нового уровня. На сегодняшний день лайнеры комплектуются системами ВБСУ или САУ. Система автоматического управления «САУ» осуществляет качественную стабилизацию судна на маршруте и в пространстве. Совокупность агрегатов системы позволяет управлять аппаратом на всех этапах полета.  Самые современные разработки позволяют осуществлять полет в так называемом штурвальном режиме, это позволяет максимально облегчить работу пилота,  минимизировать его вмешательство. Такие системы самостоятельно стабилизируют самолет от сноса, скольжения или болтанки, могут переходить даже на критические режимы полета, при этом очень часто игнорируя действия пилотов.

Автопилот самолета ведет аппарат по заданному маршруту, при этом используется комплексная информация  навигационных приборов  собственных и наземных датчиков, которые проводят анализ полета. Данная система проводит управление всеми агрегатами летательного судна. Также работают траекторные системы, которые проводят заход на посадку с высокими показателями точности без каких-либо действий пилотов.

Управляющие устройства в стандартном их виде (рычаги, педали) практически не используются. Высокая степень автоматизации довела управление до подачи электрических импульсов ко всем частям самолетов без применения гидравлики в системе управления. Электромеханические приборы управления позволяют воссоздать более привычные условия пилотам. В кабинах пилотов все чаще устанавливаются боковые рычаги управления по типу «сайдстик».

Изменяемая геометрия

С изменяемой геометрией самолет может изменить свою физическую конфигурацию во время полета.

Некоторые типы плавсредств с изменяемой геометрией переходят между конфигурациями с неподвижным крылом и вращающимся крылом. Для получения дополнительной информации об этих гибридах см. Лифт с приводом .

Изменяемая форма в плане

  • Крыло изменяемой стреловидности или качающееся крыло . Левое и правое крылья изменяют свою стреловидность вместе, обычно назад. Первая успешная стреловидность крыла в полете была проведена на Bell X-5 в начале 1950-х годов. В Beech Starship только носовые части “утка” имеют переменную стреловидность.
  • Наклонное крыло : одиночное крыло с полным размахом поворачивается вокруг своей средней точки, как это используется на NASA AD-1 , так что одна сторона движется назад, а другая – вперед.
  • Телескопическое крыло : внешняя часть крыла телескопическая над или внутри внутренней части крыла, с изменяющимся размахом, удлинением и площадью крыла, как на планере FS-29 TF .
  • Съемное крыло . В исследовании предложено длинное крыло для дозвукового взлета и крейсерского полета, которое затем отделяло внешние панели, оставляя крыло с коротким размахом для сверхзвукового полета. (См. Также ниже.)
  • Расширяющееся крыло или расширяющееся крыло : часть крыла убирается в основную конструкцию самолета для уменьшения лобового сопротивления и низковысотного упора для высокоскоростного полета и выдвигается только для взлета, крейсерского полета на малой скорости и посадки. Жерно Varivol биплан, который пролетел в 1936 году, расширил передние и задние кромки , чтобы увеличить площадь крыла.
Регулируемая стреловидность (поворотное крыло) Наклонное крыло с изменяемой геометрией  Телескопическое крыло  Расширяющееся крыло 

Складывающееся крыло : часть крыла выдвигается для взлета и посадки и складывается для высокоскоростного полета. Внешние части крыла XB-70 Valkyrie складывались во время сверхзвукового крейсерского полета. (У многих самолетов есть крылья, которые можно сложить для хранения на земле или на борту корабля; это не складывающиеся крылья в том смысле, который здесь используется.)

Складывающееся крыло

Переменный раздел

  • Переменный угол падения : плоскость крыла может наклоняться вверх или вниз относительно фюзеляжа. Крыло Vought F-8 Crusader было повернуто, поднимая переднюю кромку при взлете для улучшения характеристик. Если на крыле установлены винтовые винты с приводом от двигателя, чтобы обеспечить вертикальный взлет иливыполнение STOVL , он попадает вкатегорию двигателей с механической подъемной силой .
  • Переменный развал : секции передней и / или задней кромки всего шарнира крыла для увеличения эффективного изгиба крыла, а иногда и его площади. Это увеличивает маневренность. Ранний экземпляр был запущен на Westland N 16 в 1917 году.
  • Переменная толщина : центральную часть верхнего крыла можно поднять для увеличения толщины крыла и развала при посадке и взлете и уменьшить для увеличения скорости. Чарльз Рошвиль и другие управляли экспериментальными самолетами.
Крыло с
изменяемым углом падения
Крыло с изменяемым развалом
Аэродинамическое покрытие переменной толщины

Полиморфизм

Полиморфное крыло имеет возможность изменить количество плоскостей в полете. Никитин-Шевченко «складные истребители» прототипы были способны трансформироваться между бипланами и монопланными конфигурациями после взлета путем складывания нижнего крыла в полость в верхней поверхности крыла.

Крыла скольжения является вариацией на полиморфные идеи, в результате чего низкорасположенного крыла моноплан был оснащен вторым съемным «скольжение» крылом над ней , чтобы помочь взлету, который затем был выброшен за борт , как только в воздухе. Идея впервые была реализована на экспериментальном Hillson Bi-mono .

Полиморфное крыло Скользящее крыло

Механизмы передней кромки крыла

В качестве механизмов передней кромки крыла используются предкрылки и отклоняемые носки крыла.

Предкрылки наиболее сложные по конструкции устройства. Они представляют собой выдвижные механизмы аэродинамического профиля, установленные в передней части крыла. Их назначение улучшать летные возможности самолета на малых скоростях. При взлете их применение увеличивает угол набора высоты, что увеличивает крутизну взлета самолета и его быстрый выход на заданную высоту полета.

Обычный щелевой предкрылок в выпущенном состоянии

После выдвижения предкрылков вперед и вниз, образуется зазор, который, как и в случае с закрылками, открывает проход для набегающего потока воздуха с нижней кромки крыла к верхней его поверхности, что предотвращает срыв потока и повышает устойчивость полета самолета. Конструкция механизмов предкрылков обладает большой массой.

К основным недостаткам предкрылков следует отнести то, что в полете их деформация отличается от деформации основного крыла, что ухудшает аэродинамическое качество крыла в целом.

К разновидностям предкрылков относятся Щитки Крюгера, выполненные в виде отклоняющихся вперед и вниз плоскостей. Их применяют вместе с предкрылками на стреловидных крыльях. Они могут использоваться только до определенного угла подъема самолета. При его превышении происходит потеря управляемости.

Отклоняемые носки крыла. Применяются на самолетах с тонким крылом, где невозможно разместить механизмы предкрылков. Назначение их такое же, как и предыдущих механизмов – понизить вероятность потери управления при малых скоростях полета самолета и увеличить подъемную силу крыла.

К средствам механизации относятся также устройства, уменьшающие подъемную силу (тормозные щитки) и интерцепторы. Конструктивно они представляют собой профилированные плоскости. Располагаются в верхней части крыла перед закрылками. Если самолету нужно снизить скорость, они поднимаются вверх, и создают дополнительное сопротивление.

В убранном положении они спрятаны в крыло. Тормозные щитки отклоняются вверх синхронно, а интерцепторы используются в качестве органов управления креном самолета, поэтому они отклоняются только с той стороны крыла, в сторону которой направлен крен. Для повышения управляемости интерцепторы располагаются как можно дальше от оси самолета.

Механизация Боинг-747. Трехщелевые закрылки Фаулера, предкрылки Крюгера (ближе к фюзеляжу), обычные предкрылки (дальше).

Геометрия

Внешне профиль крыла напоминает червяка или что-то в этом роде. Являясь сложной геометрической фигурой, имеет свой набор характеристик.

На приведенном рисунке указаны основные геометрические характеристики профиля крыла самолета. Расстояние (b) называется хордой крыла, представляет собой расстояние между крайними точками спереди и сзади. Относительная толщина определяется отношением максимальной толщины профиля (Cmax) к его хорде и выражается в процентах. Координата максимальной толщины представляет собой отношение расстояние от носка до места максимальной толщины (Xc) к хорде (b) и также выражается в процентах. Средней линией является условная кривая, равноудаленная от верхних и нижних панелей крыла, а стрелкой прогиба (fmax) называется максимальное удаление средней линии от хорды. Еще один показатель – относительная кривизна — рассчитывается методом деления (fmax) на хорду (b). Традиционно все эти величины выражаются в процентах. Кроме уже упомянутых, существует радиус носика профиля, координаты наибольшей вогнутости и еще ряд других. Каждый профиль имеет свой шифр и, как правило, основные геометрические характеристики в этом шифре присутствуют.

Например, профиль В6358 имеет толщину профиля в 6 %, положение стрелки вогнутости 35 % и относительную кривизну 8 %. Система обозначений, к сожалению, не унифицирована, и разные разработчики применяют шифры каждый по-своему.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий