Из какого материала делают самолеты

Бумажный самолет в технике оригами за 5 минут

Для самых маленьких непосед есть конечно инструкция попроще, такие сувениры получаются ничуть не хуже и летают они тоже очень хорошо, смотря как запустить, можно и не догнать улетит ого-ого как на 100 метров, замучаетесь искать потом).

Самое главное, вам нужно сделать две стороны одинаковыми в зеркальном отражении, чтобы они получились ровными и тогда все точно получится.

На одном из форумов я приглядела такую поделку, которая называется Пиранья, и правду похоже? Еще и цвет автор выбрал красный. Смотрите, как ловко можно свернуть такое чудо. Никаких специальных навыков не потребуется. Самый примитивный вариант с простой моделью.

Получилась крутая вещица, моим мальчишкам она очень понравилась).

Между прочим  можно немножко и скреативить и подарить папе маленький сюрпризик.

А вообще сделайте вместе с ребенком такую поделку, чтобы было, чем заняться в кругу своей любимой семьи, ведь такая работа очень сближает.

Объемная поделка из картона

Двигаемся дальше и делаем из обычного спичечного коробка игрушку, она будет объемной и симпатичной. Такой довольно интересный биоплан, который порадует любого, его можно подарить как сувенир на праздник 23 февраля или 9 мая.

Нам понадобится:

  • картон — 2 листа
  • клей ПВА
  • линейка
  • карандаш
  • ножницы
  • спичечный коробок

Этапы работы:

1. На картоне пометьте карандашом две полоски, ширина их должна равняться спичечному коробку.

2. Затем ножницами вырежьте их. С этих полосок сделайте крылья самолета. На другом листе отметьте две полоски шириной 1,5 см и также вырежьте их по длине картона.

Одну такую тонкую полоску отодвиньте, а вторую разрежьте на две части по 8 см, остальную часть уберите, она не понадобится. Вот что получится:

3. Теперь начните сборку. Возьмите коробок от спичек, длинную тонкую полоску согните напополам и приложите, приклейте к коробку.

4. При помощи двух одинаковых полосок, которые широкие, как коробок, сделайте крылья.

Уголки можно закруглить, обрежьте их ножницами.

5. Из одной короткой узкой полоски сделайте хвост и также его закруглите, приклейте вовнутрь. И вторую приклейте сверху, сделайте из нее треугольник.

6. После вы можете вырезать пропеллер и приклеить его.

7. Поделка готова, приятной вам работы!

Маркировка авиационных сплавов

В международных стандартах первая цифра маркировки авиационного алюминия обозначает основные легирующие элементы сплава:

  • 1000 – чистый алюминий.
  • 2000 – дюралюмины, сплавы легированные медью. В определенный период – самый распространенный аэрокосмический сплав. В связи с высокой чувствительностью к коррозийному растрескиванию все чаще заменяются сплавами серии 7000.
  • 3000 – легирующий элемент – марганец.
  • 4000 – легирующий элемент – кремний. Сплавы известны также как силумины.
  • 5000 – легирующий элемент – магний.
  • 6000 – самые пластичные сплавы. Легирующие элементы – магний и кремний. Могут подвергаться термозакалке для повышения прочности, но по этому параметру уступают сериям 2000 и 7000.
  • 7000 – термически закаленные сплавы, самый прочный авиационный алюминий. Основные легирующие элементы – цинк и магний.

Вторая цифра маркировки — порядковый номер модификации алюминиевого сплава после исходного – цифра «0». Две заключительные цифры – номер самого сплава, информация о его чистоте по примесям. В случае если сплав опытный, к маркировке добавляется пятый знак «Х».

На сегодняшний день, самые распространенные марки авиационного алюминия: 1100, 2014, 2020, 3003, 2024, 2219, 2025, 5052, 5056. Отличительными особенностями этих сплавов являются: легкость, пластичность, хорошая прочность, стойкость к трению, коррозии и высоким нагрузкам. В авиастроении наиболее широко используемые сплавы — авиационный алюминий 6061 и 7075.

Материалы, из которых делают самолет

К основным материалам, из которых делаются самолеты, относятся различные металлы, их сплавы и композиционные материалы. Рассмотрим подробнее принципы работы с этими материалами.

Алюминий

Большая часть конструкции самолета изготавливается из алюминия и его сплавов. Он идеально для этого подходит, прежде всего, из-за своего небольшого веса, а также из-за широких возможностей менять свои свойства в сочетании с различными добавками.

Так, для изготовления планеров, подвергающимся небольшим аэродинамическим нагревам, используется дуралюмин, представляющий собой высокопрочный алюминиевый сплав с примесью меди, марганца и магния. Для температурно нагружаемых оболочек планера и силовых элементов скелета самолета используются сплавы алюминия повышенной жаропрочности, с добавлением магния. Такие сплавы также используются для изготовления отдельных элементов конструкции двигателя, работающих в умеренном тепловом режиме (лопатки, крыльчатки, диски компрессора первого контура).

Алюминиевые сплавы с добавлением кремния применяют для литья сложных по форме деталей, с небольшой нагруженностью. Эти сплавы обладают хорошей текучестью и заполняемостью в нагретом состоянии. Из них изготавливают: кронштейны, рычаги, фланцы. Их также используют для изготовления некоторых деталей двигателя: корпуса компрессоров, картеры, различные патрубки и др.

Титан

Из титана изготавливаются корпуса сверхзвуковых самолетов, передние края крыльев и стабилизаторов. Титановые сплавы широко применяются в конструкциях шасси, узлах крепления закрылков, в силовых элементах. В реактивных двигателях из титана изготавливаются детали, подвергающиеся высокотемпературным нагрузкам: лопатки компрессоров и диски компрессоров второго контура, кожухи камер сгорания, сопла реактивных двигателей.

Сталь

Сталь представляет собой сплав железа и углерода. Она довольно широко используется при изготовлении самолетов. В авиации в основном применяется конструкционная сталь с содержанием от 0,05 до 0,55% углерода. Из стали изготавливают отдельные элементы силового набора конструкции, детали шасси, болты, заклепки. Жаропрочная сталь идет на изготовление обшивок самолетов, развивающих большие скорости.

Композиционные материалы

Широкое применение при производстве самолетов нашли композиционные материалы (композиты), представляющие собой основу и распределенные в ней армирующие материалы. В качестве армирующих материалов используются органические волокна, а в качестве основы — различные металлические сплавы.

При рассмотрении материалов, из которых делаются самолеты нельзя забывать и о таких важных материалах, как резина и пластмассы. Резина применяется при изготовлении колес шасси, трубопроводов, шлангов, прокладок, уплотнителей, амортизаторов. Различные по своим свойствам пластмассы применяются для изготовления силовых элементов конструкции самолета, остекления кабины пилота, декоративной отделки пассажирского салона, в качестве электро- и теплоизоляции. Химически стойкие пластмассы используются для изготовления топливных баков.

Пожалуй, мы рассмотрели все основные наиболее используемые для производства самолетов материалы. То, из какого металла делают самолеты, во многом отражается и на их летных возможностях. Так, легкие алюминиевые сплавы используются для производства планеров дозвуковых самолетов, титан и сталь – для достижения сверхзвуковых и гиперзвуковых скоростей.

Для всех авиационных материалов важной характеристикой является их технологичность, то есть способность их изготовления серийно, а не только в одном экземпляре. Самолеты производятся большими партиями, все их детали изготавливаются многократно

В ходе повторяющегося процесса изготовления они не должны терять своих основных свойств.

Для этого разрабатываются специальные технологические процессы, которые представляют собой последовательные изменения свойств материала на различных этапах его производства, вплоть до его получения с заданными свойствами. Все основные технологические процессы по изготовлению материалов для самолетов стандартизированы, что гарантирует их производство с одинаковыми свойствами. Изготовление авиационных материалов, основных конструктивных частей самолета и его окончательная сборка производятся на авиастроительных заводах.

Модель, которая отличается стабильным полетом

Бумажный самолетик взлетает и сразу начинает падать или вместо прямолинейной траектории выписывает дуги. Вам это знакомо? Даже эта детская игрушка обладает определенными аэродинамическими свойствами. А значит долг всех начинающих самолетостроителей — подойти к конструированию бумажной модели с полной ответственностью.

Предлагаем вам сложить еще один классный самолетик. Благодаря тупому носу и широким дельтовидным крыльям он не уйдет в штопор, а порадует вас красивым полетом.


Хотите в совершенстве освоить все тонкости построения этого планера? Ознакомьтесь с подробным и доступным видеоуроком. После мощного заряда вдохновения вам обязательно захочется своими руками сложить самолетик, который будет порхать как птичка.

Состав отрасли

Виды цветной металлургии включают в себя отрасли, связанные с получением определенных видов металлов. Так, укрупнено можно выделить следующие отрасли:

  • производство меди;
  • производство алюминия;
  • производство никеля и кобальта;
  • производство олова;
  • производство свинца и цинка;
  • добыча золота.

Получение никеля тесно связано с местом добычи никелевых руд, которые расположены на Кольском полуострове и в Норильском районе Сибири. Многие отрасли цветной металлургии отличаются многоступенчатым металлургическим переделом промежуточных продуктов.

На этом основании эффективен комплексный подход. Это сырье для получения других сопутствующих металлов. Утилизация отходов сопровождается получением материалов, использующихся не только в других отраслях тяжелого машиностроения, но и в химической и строительной отраслях.

Основные виды и характеристики

Выделяют три основных группы:

  • Семейства алюминий-марганец (Al-Mn) и алюминий-магний (Al-Mg). Основная характеристика – высокая, едва уступающая чистому алюминию коррозийная стойкость. Такие сплавы хорошо поддаются пайке и сварке, но плохо режутся. Не упрочняются термической обработкой.
  • Коррозионно-стойкие сплавы системы алюминий-магний-кремний (Al-Mg-Si). Упрочняются термической обработкой, а именно закалкой при температуре 520 °C с последующим резким охлаждением воде и естественным старением около 10 суток. Отличительная характеристика материалов этой группы – высокая коррозионная стойкость при эксплуатации в обычных условиях и под напряжением.
  • Конструкционные сплавы алюминий-медь-магний (Al-Cu-Mg). Их основа – легированный медью, марганцем и магнием алюминий. Изменяя пропорции легирующих элементов, получают авиационный алюминий, характеристики которого могут отличаться.

Материалы последней группы обладают хорошими механическими свойствами, но при этом весьма подвержены коррозии, чем первое и второе семейство сплавов. Степень подверженности коррозии зависит от вида обработки поверхности, которую все равно необходимо защищать лакокрасочным покрытием или анодированием. Коррозионная стойкость частично увеличивается введением в состав сплава марганца.

Помимо трех основных видов сплавов различают также ковочные сплавы, жаропрочные, высокопрочные конструкционные и др. обладающие необходимыми для конкретной сферы применения свойствами.

ДЕФОРМИРУЕМЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ

Алюминиевые сплавы – это сплавы, в состав которых входит алюминий и легирующие добавки, такие как цинк, медь, марганец, литий. В следствии чего появляется возможность подвергать такие сплавы упрочняющей термической обработке. Для производства сплавов используется алюминий, выпускаемый в виде чушек. Такие сплавы образуют твердые растворы, эвтектики. Их подвергают закалке, старению и отжигу. При закалке Tнагрева = 485…525°С. после охлаждения деталь подвергают старению при Т = 150…200°С на протяжении 10…24 часов. Благодаря таким тепловым обработкам увеличивается твердость и прочность обрабатываемых сплавов.

Деформируемые сплавы – металлические сплавы для изготовления изделий, которые подвергают пластической деформации в горячем и холодном состоянии.

Высокопрочные сплавы

Алюминий В95пч – высокопрочный термоупрочняемый сплав алюминия с цинком, магнием и медью (табл. 1). Это самый прочный из наиболее известных сплавов алюминия. Сплав обладает высокой твёрдостью и прочностью (σв = 500–560 МПа; σ0,2 = 430–480 МПа; δ = 7–8 % ) в виду образования твёрдых кристаллических образований в нём. Широко применяемый высокопрочный сплав в виде катаных и прессованных длинномерных (до 30 м) полуфабрикатов для верхних обшивок крыла (плиты, листы), стрингеров, балок, стоек (профили, трубы) и других элементов фюзеляжа и крыла (рис. 1) современных самолетов (Ту-204, Бе-200, Ил-96, SSI-100).

Зарубежные металлургические компании выпускают следующие материалы – аналоги В95пч:

  • США – AA7075;
  • Германия – 3.4365;
  • Япония – 7075;
  • Европейский Союз – ENAW-AlZn5.5MgCu.

Таблица 1

Химический состав в % материала В95пч ГОСТ 4784 – 97

Fe

Si

Mn

Ni

Cr

Ti

Al

Cu

Mg

Zn

Примесей

0.05 – 0.25

до 0.1

0.2 – 0.6

до 0.1

0.1 – 0.25

до 0.05

87.45 – 91.45

1.4 – 2

1.8-2.8

5-6.5

0.1

Рис. 1. Крыло Ил-96

1965 – 1 (В96Ц3) – особо прочный (σв = 615–645MПа; σ0,2 = 595–620 МПа; δ = 7÷8 % ) сплав алюминия и легирующих элементов. Рекомендуется для применения в сжатых зонах конструкций планера самолетов: для верхних обшивок крыла, стоек и других элементов. Поставляется промышленностью в виде длинномерных катаных плит или листов, прессованных полуфабрикатов: профилей, панелей, полос.

Таблица 2

Химический состав в % материала 1965 – 1 (В96Ц3)

Fe

Si

Mn

Zr

Cr

Ti

Al

Cu

Mg

Zn

0.2 и меньше

0.1 и меньше

0.05 и меньше

0.1 – 0.2

1.4 – 2

0.05 и меньше

84.4 – 87.4

1.4 – 2

1.7-2.3

7.6-8.6

Определение. Исторический экскурс

Началом истории авиационных алюминиевых сплавов считается 1909 год. Немецкий инженер-металлург Альфред Вильм опытным путем установил, если сплав алюминия с незначительным добавлением меди, марганца и магния после закалки при температуре 500 °C и резкого охлаждения выдержать при температуре 20-25 градусов в течение 4-5 суток, он поэтапно становится тверже и прочнее, не теряя при этом пластичности. Процедура получила название «старение» или «возмужание». В процессе такой закалки атомы меди заполняют множество мельчайших зон на границах зерен. Диаметр атома меди меньше, чем у алюминия, потому появляется напряжение сжатия, вследствие чего повышается прочность материала.

Впервые сплав был освоен на немецких заводах Dürener Metallwerken и получил торговую марку Dural, откуда и произошло название «дуралюмин». Впоследствии, американские металловеды Р. Арчер и В. Джафрис усовершенствовали состав, изменив процентное соотношение, в основном магния. Новый сплав получил название 2024, который в различных модификациях широко применяется и сейчас, а все семейство сплавов — «Авиаль». Название «авиационный алюминий» этот сплав получил практически сразу после открытия, поскольку полностью заменил дерево и метал в конструкциях летательных аппаратов.

Здесь самолету дарят «душу», или немного о летающих серверах

Тот же стапель снизу

После установки крыла остается установить шасси размером с компактный легковой автомобиль, и самолет готов. Но для первого полета пока не время, начинается установка авионики.

Даже на заре авиации самолеты не могли летать без вмешательства человека. Сейчас большинство летательных аппаратов и вовсе в угоду аэродинамике не способны держаться в воздухе без сложных электронных «мозгов», постоянно корректирующих движение самолета в пространстве.

Над стапелем завис уникальный кран совсем не авиационной грузоподъемности

Ил-76МД-90А не стал исключением: его электроника занимает железнодорожный вагон и приезжает в Ульяновск со всей страны.

Её и многие другие системы устанавливают в производстве окончательной сборки, в уже стоящий на шасси самолет.

Водило для перемещения самолета не так просто, как кажется

Начат монтаж электроники

Антенн видимо-невидимо

Самолет даже включают без двигателей

И вот он оказывается у самых ворот, огромных, как трехэтажный дом. Здесь его впервые включают, запитывая от внешних источников. После проверки всех компонентов самолет уходит на окраску.

Впереди — наземные и летные испытания. Но это совсем другая история, которую я расскажу позже.

Основные авиазаводы России

Чтобы увидеть, где в России делают самолеты, нужно открыть карту. География расположения авиазаводов на территории России представлена весьма разнообразно, от западных границ до Дальнего Востока.

Иркутский авиационный завод

В Южном административном округе, в Ростове –на-Дону и в Таганроге производят вертолеты Ми-26, Ми-28, Ми-35, самолеты-амфибии Бе-200. В Московской области – МиГ-29, Ил-103. В Центральной части России, в Воронежской и Смоленской областях — Ил-96-300, Ан-148, Ил-96-400, Ил-112, Як-18Т, СМ-92Т. На Волге расположены заводы по производству Ан-140,Ту-204, Ил-76, Ан-140, МиГ-29, МиГ-31, МиГ-35. В Республике Татарстан делают Ту-214, Ансат, Ми-17, Ми-38. В Сибири — Су-34, Су-30, Як-130, МС-21, Як-152, Су-25УБ, Су-25УБМ , Ми-8АМТ, Ми-171, Ми-171А2, Ми-8АМТШ. В республике Башкортостан – Ка-226, Ка-27, Ка-31, Ка-32. На Дальнем Востоке расположено производство Сухой Суперджет-100, Су-27, Су-30, Су-33, Су-35, Т-50 (ПАК ФА) и вертолетов  Ка-52, Ка-62.

Более сложные и надежные варианты

Если вы хотите знать, как сделать далеко летающий самолёт из бумаги, то этот раздел для вас. В нем ваз ждут два интересных экземпляра.

Рекомендуем посмотреть еще тут

  • Как сделать шар из бумаги — простая пошаговая инструкция с фото и схемами как изготовить бумажный шар (120 фото)

  • Как сделать помпон: пошаговое описание как пошить красивый помпон из пряжи своими руками (75 фото)
  • Как сделать тетрадь своими руками — пошаговый мастер-класс как изготовить стильную и красивую тетрадь (видео и 120 фото)

Сгибаем пополам вдоль листа и загибаем углы к центру. К получившейся линии тянем те же углы и складываем по старому сгибу. Переворачиваем заготовку и гнем носик не до конца, потом маленькую часть к получившемуся треугольнику. Остались крылья.

Правый угол листа нужно согнуть к левой стороне и наоборот образуя линии. Теперь левый угол тянем к середине правой линии, правый аналогично. Сгибаем носик и сверяем со сгибами, сгибаем уголки к середине и делаем крылья, сгибая не по краю у носика.

Немного истории

Самые первые самолеты (братьев Райт, США – 1903 г.; «Вуазен», Франция – 1905г; «Блерио», Франция – 1906 г.; «Рой», Англия – 1908 г.) изготавливались из тонких стальных труб, обтянутых материей, или имели деревянную конструкцию и полотняную обшивку поверхностей. Следующим шагом совершенствования конструкций самолета следует считать замену тканей на обшивку фанерой. Для повышения прочности фанерных конструкций, их стали делать в несколько слоев, скрепленных клеем.

Однако, деревянные конструкции были довольно неуклюжими, имели большое сопротивление во время полета. С увеличением скоростей самолетов, повышением нагрева конструкций и элементов двигателей, их использование стало небезопасным. Конструкторы стали постепенно заменять деревянные детали на металлические. Но полностью металлические самолеты появились не сразу.

Несовершенная технология производства металла на первых этапах его применения в авиации, делала конструкции из него, тяжелее деревянных, поэтому переход на металл происходил не быстро. Первые пробные аэропланы целиком из металла были изготовлены немцами в начале второго десятилетия прошлого века. По весу они превышали деревянные конструкции в несколько раз, и их летные данные оставляли желать лучшего.

После войны основной причиной развития металлических самолетов послужило появление пассажирской авиации, потребовавшей производства большого количества самолетов с длительными сроками эксплуатации. Деревянные конструкции набухали под действием неблагоприятных атмосферных явлений (влаги, температуры). При определенных условиях они начинали подгнивать. Все это приводило к их быстрому выходу из строя, и не удовлетворяло требованиям гражданской авиации.

Ученые многих стран трудились над совершенствованием металлических материалов для авиастроения и технологии их изготовления. В СССР, одним из основоположников металлического самолетостроения стал знаменитый авиаконструктор Андрей Николаевич Туполев.

В 30-е годы прошлого столетия металл почти полностью вытеснил дерево в конструкции самолетов. Однако деревянные конструкции еще некоторое время применялись в отдельных случаях. В частности, в конструкциях советских истребителей Лагг-3, И-16, Як-1 и других, участвовавших в Великой Отечественной войне, использовались деревянные элементы. Это было сделано из соображений экономии, так как деревянные конструкции в изготовлении обходились дешевле металлических.

Свойства руд

Отвечать на вопрос: какими свойствами обладает железная руда, не совсем просто. Хотя бы потому, что перечень свойств зависит от процента данного металла в руде и количества посторонних примесей. К примеру, красный железняк, содержащий гематит (Fe2O3), содержит в себе целых 70% железа от общего количества.

В общем и целом, кстати, целесообразной добычей железа считается только та, где в рудах содержится от 40% железа и выше. Данная цифра действительно дает понять, что железо распространено в окружающем мире многократно больше других элементов. К примеру, для того же урана, содержание его в руде в количестве 2% считалось бы небывалой удачей…

Но вернемся к нашему красному железняку. Давая характеристику железной руде, можно сказать, что красный железняк представляет собой диапазон от порошкового вещества до плотного.

Лимонит (он же – бурый железняк), также является рудой железа, однако она представляет собой пористую и рыхлую породу, содержащую весомые доли фосфора и марганца. Пустой породой у него часто выступает глина. В силу чего, кстати, довольно легко поддается извлечению железа. Потому из него часто делают чугун.

Производство

Итак, теперь мы понимаем, из чего делают железо. Горная порода является сырьем для его добычи. Ее отвозят на перерабатывающее предприятие, загружают в доменную печь и нагревают до температуры 1400-1500 градусов. Эта температура должна держаться в течение определенного времени. Содержащееся в составе горной породы железо плавится и приобретает жидкую форму. Затем его остается разлить в специальные формы. Образовавшиеся шлаки при этом отделяют, а само железо получается чистым. Затем агломерат подают в бункерные чаши, где он продувается потоком воздуха и охлаждается водой.

Есть и другой способ получения железа: горную породу дробят и подают на специальный магнитный сепаратор. Так как железо имеет способность намагничиваться, то минералы остаются на сепараторе, а вся пустая порода вымывается. Конечно, чтобы железо превратить в металл и придать ему твердую форму, его необходимо легировать с помощью другого компонента – углерода. Его доля в составе очень мала, однако именно благодаря нему металл становится высокопрочным.

Стоит отметить, что в зависимости от объема добавляемого в состав углерода сталь может получаться разной. В частности, она может быть более или менее мягкой. Есть, например, специальная машиностроительная сталь, при изготовлении которой к железу добавляют всего 0,75 % углерода и марганец.

Теперь вы знаете, из чего делают железо и как его преобразовывают в сталь. Конечно, способы описаны весьма поверхностно, но суть они передают. Нужно запомнить, что из горной породы делают железо, из чего далее могут получать сталь.

Крылья

Очень сложно найти самолет, устройство которого не предусматривало бы размещение наиболее узнаваемой его части – крыльев. Этот элемент служит для формирования подъемной мощи, и в современных конструкциях для увеличения этого параметра крылья размещают в плоском основании фюзеляжа самолета.

Сами крылья предусматривают в своей конструкции наличие специальных механизмов, при поддержке которых исполняется поворот самолета в одну из сторон. Кроме того, данная часть летательного аппарата снабжается взлетно-посадочным устройством, что регулирует движение самолета в моменты взлетов и посадок, и оказывают помощь в контроле взлетной и посадочной скоростей. Нужно еще подметить, что некоторые конструкции самолетов предусматривают наличие топливных баков в крыльях.

Цветные металлы и их применение.

Цветные металлы и их сплавы очень востребованы, широко применяются во всех отраслях промышленности и сельского хозяйства. К ним относятся все металлы за исключением железа и его производных, которые классифицируются как черные металлы.

Практически все цветные металлы обладают следующими свойствами:

  • Устойчивостью к коррозии и значительным перепадам температур;
  • Пластичностью;
  • Многосторонностью применения.

Кроме этого, важной особенностью цветных металлов является то, что их свойства можно изменить с помощью закалки, искусственного старения или термической обработки. Также они хорошо обрабатываются штамповкой, прокаткой, ковкой, сваркой, пайкой, прессованием и резкой

Наиболее ценными цветными металлами являются: Алюминий; Медь; Никель; Олово; Свинец; Цинк; Магний.

Из чего сделаны колеса в самолете

Но если мы говорим про разработчиков шин, то это очень ответственная и трудная работа. Если мы рассмотрим колеса самолета в весовом плане, то распределение будет следующее:

Это примерные цифры, все зависит от модели самолета и типа колеса. Если самолет на земле не разгоняется быстрей, чем 192 километра в час, и весит до 3-ех тон, то сами колеса очень похожи по своему принципу на автомобильные. Но колеса в больших самолетах, таких как AirBus A320 или Boeing 737, это совершенно иные колеса. Они обязаны выдерживать крайне высокие нагрузки. Да, на колеса приходится лишь взлет и посадка. Но если вы посмотрите на статистику авиакатастроф, то именно на эти моменты в полете приходится больше всего аварий. Хорошие шины – спасают жизнь. Только посмотрите, что произошло с шинами после аварийной посадки:

Удивительно, но эта катастрофа обошлась без жертв. А если бы лопнули не только шины, но и сами диски? Вероятно, что самолет бы мог даже взорваться на взлётно-посадочной полосе.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий