Чем заправляют самолеты: виды авиационного топлива

Плотность

При расчетах производительности производители авиалайнеров используют плотность реактивного топлива около 6,7 фунта / галлон США или 0,8 кг / л.

Конкретные случаи:

  • Bombardier Aerospace : многоцелевой самолет Challenger – это особый вариант платформы бизнес-джетов Bombardier Challenger 650. Bombardier основывает рабочие характеристики на использовании топлива со средней низкой теплотворной способностью 18 550 БТЕ / фунт (43,147 МДж / кг) и плотностью 0,809 кг / л (6,75 фунта / галлон США).
  • Embraer : В руководстве по планированию аэропорта для E195 используется принятая плотность топлива 0,811 кг / л (6,77 фунта / галлон США).

Воздушная дозаправка в СССР

В Советском Союзе также велись разработки различных дозаправочных воздушных систем. В 1929 году группа конструкторов под руководством военного инженера А.К. Запанованного создала рабочую систему перекачки топлива в воздухе. В 1936 году даже состоялась первая в мире дозаправка истребителя в воздухе, но в стадию практического применения система так и не перешла. Сначала мешали технические проблемы: летчику заправляемой машины необходимо было вручную поймать законцовку шланга с прикрепленным грузом и направить ее в заправочную горловину. Это было непростым делом, к тому же появились самолеты с закрытой кабиной. А затем работы прервала война.

К этой идее вернулись после победы, уже на новом техническом уровне. В начале 1950-х годов была принята на вооружение оригинальная идея передачи горючего по принципу «с крыла на крыло», разработанная летчиками-испытателями И.И. Шелестом и В.С. Васяниным. Система была максимально автоматизирована, но осложнялась процессом стыковки, который проходил за спинами летчиков по подсказкам других членов экипажа, а также нахождением шланга в зоне турбулентности, что нередко приводило к аварийной ситуации. Тем не менее способ был успешно освоен и активно применялся на самолетах Ту-4 и Ту-16 вплоть до снятия их с вооружения.


Заправка МиГ-19

Параллельно с системой дозаправки «с крыла на крыло» разрабатывалась и более перспективная система «шланг-конус», ставшая впоследствии основной для заправки истребителей и самолетов дальней авиации. На испытаниях 1953 года с помощью этой системы от заправщика Ту-4 смогли получить топливо одновременно два истребителя МиГ-15. Две точки дозаправки располагались на законцовках крыла. Выпускаемые шланги с конусами стыковались со специальными телескопическими штангами, укрепленными на носовой части истребителей.

С 1953 года все новые бомбардировщики стали проектироваться с оборудованием для дозаправки в воздухе. Первые заправщики, созданные на базе Ту-4, поступили на вооружение в 1954 году, затем пришли Ту-16, а в конце 1950-х годов в топливозаправщики системы «шланг-конус» начали переоборудовать и бомбардировщики, разработанные в ОКБ Мясищева.

Авиационные бензины

Основная область применения авиационных бензинов — топливо высоконагруженных поршневых двигателей внутреннего сгорания.

Основной способ добычи авиационных бензинов — прямая перегонка нефти, каталитического крекинга или риформинга без добавки или с добавкой высококачественных компонентов, этиловой жидкости и различных присадок.

Для авиабензина основными показателями качества являются:

  • детонационная стойкость (определяет пригодность бензина к применению в двигателях с высокой степенью сжатия рабочей смеси без возникновения детонационного сгорания)
  • фракционный состав (говорит об испаряемости бензина, что необходимо для определения его способности к образованию рабочей топливовоздушной смеси; характеризуется диапазонами температур выкипания (40—180(°)С) и давлений насыщенных паров (29—48 кПа))
  • химическая стабильность (способность противостоять изменениям химического состава при хранении, транспортировке и применении).

Классификация авиационных бензинов основывается на их антидетонационных свойствах, выраженных в октановых числах и в единицах сортности. Сорта советских авиационных бензинов ранее маркировались по системе: буква Б и через дефис – цифра, обозначающая октановое число. Как пример, в СССР середины 20-го века выпускались авиационные бензины — Б-59, Б-70, Б-74, Б-78б и Б-78г, причём два последних несколько различались по химическому составу, что обозначали литеры после цифры: б – это из бакинских месторождений нефти, а г – из грозненских.

В дальнейшем для повышения октанового числа в бензин вводилась антидетонационная присадка:

  • продукт Р-9 (тетраэтилсвинец – 55%, бромистый этил – 35%, монохлорнафталин – 10%, красный краситель)
  • продукт В-20 (тетраэтилсвинец – 55%, бромистый этил – 35%, дихлорэтан – 10%, синий краситель)

Присадка добавлялось по объёму от 1 до 4 куб. см. жидкости на 1 литр. Бензины с присадкой имели маркировку:

  • на основе Б-59: 1Б-59(73), 2Б-59(78), 3Б-59(81), 4Б-59(82)
  • на основе Б-70: 1Б-70(80), 2Б-70(85), 3Б-70(87), 4Б-70(88)
  • на основе Б-74: 1Б-74(85), 2Б-74(88), 3Б-74(90), 4Б-74(92)
  • на основе Б-78: 1Б-78(87), 2Б-78(92), 3Б-78(93), 4Б-78(95)

где цифра перед буквой Б означает объём количества присадки в см3 на литр бензина. В скобках число показывает итоговое октановое число смеси бензина с присадкой. Также готовились топливные смеси, с добавлением в бензин бензолов и изооктанов, с октановым числом 95:

  • Смесь №1: 60% Б-70, 20% изооктана и 20% неогексана.
  • Смесь №2: 60% Б-70, 20% алкилбензола и 20% неогексана.
  • Смесь №3: 60% Б-70, 32% изооктана и 8% изопентана.

С распространением турбореактивных двигателей производство авиационных бензинов было значительно сокращено. К концу 20-го века в производстве оставались этилированные бензины Б-91/115 и Б-95/130, которые маркируются по ГОСТ 1012-72 через дробь: в числителе — октановое число или сортность на бедной смеси, в знаменателе — сортность на богатой смеси. Затем производство этих бензинов на территории РФ было полностью прекращено, а парк легкомоторной авиации начал использовать автомобильный бензин АИ-95 или импортный бензин AVGAS 100LL (с осени 2016 года 100LL производится в РФ по ГОСТ Р 55493-2013).

Также осталось производство бензина Б-70, который долгое время применялся в качестве горючего для турбостартеров двигателей самолётов типа Ту-16, Ту-22, и ряда др. В настоящее время этот бензин в основном применяется при техническом обслуживании техники в качестве растворителя.

Реактивные топлива

Основная статья: Авиакеросин

Керосин — фракция нефти, выкипающая в основном в интервале температур 200—300°С Реактивное топливо, топливо для авиационных реактивных двигателей — это как правило, керосиновые фракции, получаемые прямой перегонкой из малосернистых (например, Т-1) и сернистых (ТС-1) нефтей. В настоящее время прямоперегонного авиационного топлива мало, широко применяется гидроочистка и добавка присадок.

Керосин применяется для бытовых целей как печное и моторное топливо, растворитель лаков и красок. Реактивное топливо применяется в качестве горючего для газотурбинных двигателей самолётов и вертолётов гражданской и военной авиации, и кроме того, топливо на борту воздушного судна также может использоваться в качестве теплоносителя или хладагента (топливно-воздушные и топливно-масляные радиаторы), и в качестве рабочей жидкости гидросистем (например, управление сечением реактивного сопла двигателя). Также реактивные топлива широко применяются как растворитель при техническом обслуживании воздушных судов, при очистке от загрязнений ручным либо машинным способом (например, в ультразвуковой установке для очистки фильтров в качестве рабочей жидкости применяется авиакеросин). Авиационные реактивные топлива проходят в общей сложности до 8 ступеней контроля качества, а в Российской Федерации, кроме того, и приёмку военным представителем.

Для реактивных топлив основными показателями качества являются:

  • массовая и объёмная теплота сгорания
  • термостабильность топлива
  • давление насыщенных паров
  • кинематическая вязкость
  • совместимость с конструкционными и уплотнительными материалами
  • нагарные и противоизносные свойства
  • электропроводность
  • серность
  • кислотность

Реактивные топлива вырабатываются в основном из среднедистиллятных фракций нефти, выкипающих при температуре 140—280 С° (лигроино-керосиновых). Широкофракционные сорта реактивных топлив изготовляются с вовлечением в переработку бензиновых фракций нефти. Для получения некоторых сортов реактивных топлив (Т-8В, Т-6) в качестве сырья применяются вакуумный газойль и продукты вторичной переработки нефти.

Реактивные топлива на 96—99 % состоят из углеводородов, в составе которых различают три основные группы:

  • парафиновые
  • нафтеновые
  • ароматические.

Кроме углеводородов в реактивных топливах в незначительных количествах присутствуют сернистые, кислородные, азотистые, металлорганические соединения и смолистые вещества. Их содержание в реактивных топливах Регламентируется стандартами.

В России и странах СНГ, эксплуатирующих советскую авиатехнику, используются следующие типы авиационного топлива:

ТС-1 в РФ производится по ГОСТ 10227-86 с изм. 1-6. — прямогонная фракция 150—250 С°, либо смесь прямогонных и гидроочищенных фракций (основным ограничением является содержание общей серы и меркаптановой не более 0,2 % и 0,003 %). Самый массовый вид авиационного топлива на территории РФ и постсоветском пространстве, предназначенный для всех старых типов турбовинтовых и дозвуковых турбореактивных двигателей, также на нём эксплуатируются самолёты зарубежных производителей. По своим характеристикам и области применения примерно соответствует зарубежному керосину Jet-A. Является резервным по отношению к топливу РТ.

РТ — высококачественное топливо, нефтяная фракция 135—280 С° с полной гидроочисткой. Содержание серы: общей — 0,1 %, меркаптановой — 0,001 %. В связи с гидрокрекингом топливо «сухое», то есть имеет низкие смазывающие свойства. В процессе производства в него вводятся антиокислительная и антиизносная присадки. Предназначено для турбореактивных дозвуковых и некоторых сверхзвуковых самолётов (Су-27, Ту-22М3 и др.), а также в качестве резерва топлива ТС-1. Зарубежных аналогов для данного топлива нет.

Т-6 и Т-8В — термостойкое реактивное топливо для двигателей некоторых сверхзвуковых самолётов (например, ). Производятся по очень сложной технологии с гидроочисткой и введением присадок. Эти топлива производятся только для нужд Министерства обороны РФ.

Сортность и производство

На устойчивость к взрыву при работе двигателя внутреннего сгорания на максимальной мощности в первую очередь влияет сортность топливной смеси. Например, горючее №115 допускает прирост рабочей мощности на 15% больше, чем авиационное топливо, созданное на изооктане. Авиационный бензин Avgas 100 ll согласно технической документации имеет сортность не менее 130 единиц. У топлива же марки 91 115 этот показатель превышает 115 единиц, что прописано в ГОСТ 1012. Топливо Avgas 100 ll даёт прирост к мощности, но только в том случае, если двигатель работает на обогащённой смеси. Мощность в этом случае увеличивается на 15% по сравнению с авиационным бензином марки Б 91 115.

Производство авиационного бензина представляет собой достаточно сложный процесс, заключающийся в следующих технологических операциях:

– производство различных компонентов (стабильный катализатор, толуол и т. д.);

– процесс фильтрации присадок и других компонентов;

– смешивание присадок и компонентов.

В России авиационный бензин не производится из-за наличия запрета на изготовление этила. Однако при условии закупки недостающего компонента за границей РФ изготовление топлива для летательных аппаратов будет экономически не обоснованным, что связано с небольшими объемами его использования.  

Авиационное топливо обязательно содержит тетраэтилсвинец (ТЭС), который существенным образом улучшает его детонационные характеристики. Кроме того, этот компонент увеличивает износоустойчивость трущихся элементов двигателя. Однако ТЭС в чистом виде не используется, а его концентрация в применяемой для этих целей этиловой жидкости составляет 50%.

Согласно ГОСТ к авиационному бензину применяются более жесткие требования, чем к автомобильным видам топлива. А его производство подразумевает четкое число технологических процессов.

Плотность

Одна из важнейших характеристик, используемых в отношении всех нефтепродуктов. И если сравнить плотность керосина и воды, мы увидим, что последняя будет выше. Приведем конкретные цифры:

  • Плотность воды дистиллированной при «идеальной» температуре 3,7 °С — 1000 кг/м3.
  • Плотность воды морской при «идеальной» температуре 3,7 °С — 1030 кг/м3.
  • Плотность воды кипящей при 100 °С — 958,4 кг/м3.

Для дальнейшего сравнения плотности воды и керосина познакомимся с этой характеристикой уже касательно нефтепродукта. Это 800 кг/м3.

Надо сказать, что на первых этапах развития нефтяной промышленности плотность была единственной характеристикой керосина. Сегодня же на практике чаще всего используют такую величину, как относительная плотность. Это безразмерный показатель, равный соотношению истинных плотностей данного нефтепродукта и дистиллированной воды, взятых для сравнения при определенных температурах.

Так, плотность керосина при 20 °С будет составлять от 780 до 850 кг/м3.

Достоинства и недостатки

Недостатки

  1. использование дорогих катализаторов и водорода, который становится все более дефицитным на НПЗ
  2. необходимость блоков очистки углеводородных и водородсодержащих газов от сероводорода и установок для переработки H2S до серы или серной кислоты
  3. удаление практически всех гетероатомных соединений, способных образовывать на металлических поверхностях защитные пленки, что приводит к ухудшению противоизносных свойств топлив.

Достоинства

  1. значительное улучшение основных характеристик нефтепродуктов
  2. уменьшение коррозии оборудования
  3. снижение негативного влияния продуктов сгорания топлива на атмосферу
  4. улучшение запаха и цвета смазочных масел (по сравнению с контактной очисткой глинами)

Виды авиационного топлива

Обычная авиация топливо

Реактивное топливо

Наземная заправка МИГ-29 с танкера УРАЛ (2011 г.).

Реактивное топливо это топливо от прозрачного до соломенного цвета на основе неэтилированный керосин (Джет А-1) или нафта-керосин смесь (Jet B). Похожий на дизельное топливо, его можно использовать в любом двигатели с воспламенением от сжатия или турбинные двигатели.

Jet-A используется в современных коммерческих авиалайнерах и представляет собой смесь чрезвычайно очищенного керосина и горит при температуре 49 ° C (120 ° F) или выше. Топливо на основе керосина имеет гораздо более высокую температуру вспышки, чем топливо на основе бензина, а это означает, что для воспламенения требуется значительно более высокая температура. Это качественное топливо; если он не проходит испытания на чистоту и другие тесты качества для использования на реактивных самолетах, он продается наземным пользователям с менее строгими требованиями, например железным дорогам.

Avgas

Avgas (среднийiation газoline) используется в небольших самолетах, легких вертолетах и ​​старинных самолетах с поршневыми двигателями. Его формулировка отличается от общепринятой. бензин (бензин Великобритания), используемые в автомобили который в авиации обычно называют могасом или автогазом. Хотя он бывает разных классов, его 100 октановое число выше, чем у «обычного» автомобильного бензина, который колеблется от 91 в США до 95 в Европе.

Новые виды авиационного топлива

Биотопливо

Альтернативы традиционному ископаемому авиационному топливу, новое топливо, производимое биомасса в жидкость метод (как устойчивое авиационное топливо) и некоторые прямые растительные масла также можно использовать.

Такие виды топлива, как устойчивое авиационное топливо имеют то преимущество, что на самом воздушном судне не требуется никаких модификаций, при условии, что характеристики топлива соответствуют спецификациям по смазывающей способности и плотности, а также достаточному набуханию эластомерных уплотнений в существующих топливных системах самолетов.Экологичное авиационное топливо а смеси ископаемых и альтернативных видов топлива из экологически чистых источников позволяют снизить выбросы твердых частиц и парниковые газы. Однако они не используются широко, поскольку по-прежнему сталкиваются с политическими, технологическими и экономическими препятствиями, такими как в настоящее время значительно дороже авиационного топлива, производимого традиционным способом.

Сжатый природный газ и сжиженный природный газ

Сжатый природный газ (CNG) и (СПГ) – это сырье для топлива, которое самолет может использовать в будущем. Были проведены исследования возможности использования природного газа. и включить самолет “SUGAR Freeze” в рамках программы NASA N + 4 Advanced Concept Development (разработанной командой Boeing’s Subsonic Ultra Green Aircraft Research (SUGAR)). В Туполев Ту-155 был испытательным стендом альтернативного топлива, который работал на СПГ. Низкая удельная энергия природного газа даже в жидкой форме по сравнению с обычным топливом дает ему явный недостаток для использования в полете.[нужна цитата]

Процесс заправки авиалайнера

Рассмотрев вопрос о том, на чем летают самолеты, необходимо перейти к обсуждению процесса заправки воздушного транспорта. Порядок проведения этой процедуры зависит от текущего сезона. В зимние месяцы в топливо добавляются специальные компоненты, которые препятствуют загустению и появлению смол в топливных баках. Такие присадки гарантируют полное сгорание смеси. Многих людей интересует расположение топливных баков в пассажирских авиалайнерах. Как правило, подобные устройства устанавливаются в центральной части фюзеляжа и возле крыльев. Смесь, содержащаяся в центральном баке, напрямую подается в двигатель. В некоторых моделях воздушных кораблей устанавливается дополнительный бак, который находится в хвостовой части. Этот бак применяется с целью улучшения регулировки центровки самолета в процессе полета.

Устройство топливных баков может различаться в зависимости от конструкторских решений. Некоторые авиастроительные компании применяют дренажные системы, а отечественные инженеры используют технологические отверстия. Эти отверстия делаются в топливных баках для того, чтобы снизить уровень давления внутри бака и создать сообщение с атмосферой. В противном случае топливо перестанет поступать к двигателям.

Перед заправкой лайнера, остатки горючего сливаются из топливных баков. Данный процесс способствует устранению излишней влаги. Эту задачу выполняют бортинженеры и техники. Перед тем как заправить баки авиалайнера, техники должны провести процедуру контроля, поступившего на склад горючего. В ходе подобной проверки выявляется процент содержания воды в горючей смеси. После всех подготовительных этапов топливо заливается в баки самолета через специальные шланги. Для заправки лайнеров используются специальные машины. Перед тем как начать заправку, к самолету крепится специальный трос, который используется как заземление. Еще один трос крепится к топливозаправщику и точке заземления.

Рассматривая вопрос о том, как заправляют самолеты, необходимо уделить внимание нескольким важным факторам. Для того чтобы исключить проливание топлива в баки самолета встраивается обратный клапан, который включается в случае увеличения давления

После того как уровень давления снижается, клапаны закрываются в автоматическом режиме. Лайнеры заправляются до того момента, как пассажиры поднимутся в салон транспортного средства.

Необходимо отметить тот факт, что заправщики не могут залить больше горючего, чем помещается в бак. После того как уровень керосина в баке достигнет определенной отметки, клапаны закроются в автоматическом режиме. В случае поломки автоматики, высокое давление в топливных баках приведет к тому, что топливо начнется сливаться на землю. Текущий уровень топлива отображается на специальных приборах, которые установлены в кабине пилотов. Перед тем как взлететь, пилоты проверяют показания с этих устройств. Если в топливных баках будет разный уровень давления, то самолет во время полета начнет кренить в определенную сторону.

После заправки техники проводят сравнение количества залитого керосина с показателем, необходимым для преодоления конкретной дистанции. Совпадение данных параметров свидетельствует о готовности лайнера к рейсу. Через пятнадцать минут после окончания вышеописанного процесса, техники сливают отстой из основных баков и заново проверяют уровень влажности. Этот процесс является последним этапом заправки авиалайнера.

Отдельного внимания заслуживает вопрос о количестве используемого топлива. Как правило, современные Боинги используют около пятнадцати тонн горючего за один рейс. В случае с Аэробусом, данный показатель увеличивается до двадцати пяти тонн. Конкретные параметры рассчитываются пилотами лайнера на основе длины маршрута. Помимо этого, учитываются резервы, которые могут потребоваться в случае возникновения форс-мажоров.

Производство авиационного бензина – это сложный процесс

Ссылки [ править ]

  1. ^ а б https://www.skybrary.aero/bookshelf/books/2478.pdf
  2. ^ https://www.airforcemag.com/article/0712fuel/
  3. ^ Американская столетняя комиссия по полетам. «Авиационное топливо» . Архивировано из оригинального 20 апреля 2012 года . Проверено 10 мая 2012 года .
  4. ^ Разработка поршневых авиационных двигателей, Билл Ганстон 1999, Patrick Stephens Limited, ISBN 1 85260 599 5 , стр. 36 
  5. ^ Ван, М .; Chen, M .; Fang, Y .; Тан, Т. (2018). «Высокоэффективное преобразование растительного масла в био-авиационное топливо и ценные химические вещества путем сочетания ферментативной переэтерификации, перекрестного метатезиса олефинов и гидроочистки» . Биотехнология для биотоплива . 11 : 30. DOI10,1186 / s13068-018-1020-4 . PMC 5801801 . PMID 29445419 .
  6. ^ Капоран, Эдвин; и другие. (2011). «Исследования химической, термической стабильности, набухания уплотнений и выбросов альтернативных видов топлива для реактивных двигателей». Энергия и топливо . 25 (3): 955–966. DOI10.1021 / ef101520v .
  7. ^ Мур, RH; и другие. (2017). «Смешивание биотоплива снижает выбросы частиц из авиационных двигателей в крейсерских условиях» . Природа . 543 (7645): 411–415. DOI10,1038 / природа21420 . PMID 28300096 .
  8. ^ “Отчет RREB” . kic-innoenergy.com . Архивировано из оригинала 14 сентября 2016 года . Проверено 7 мая 2018 .
  9. ^ Отчет IATA 2014 по альтернативным видам топлива
  10. ^ «Вывод на рынок топлива для биореактивных двигателей» . Архивировано из оригинала на 2016-11-05 . Проверено 27 декабря 2016 .
  11. ^ “Дизайн самолета – Лаборатория авиации и окружающей среды Массачусетского технологического института” . Архивировано из оригинала на 2016-12-30 . Проверено 27 декабря +2016 .
  12. ^ EnergyWire. «Может ли природный газ использоваться в качестве топлива для коммерческих рейсов будущего?» . Архивировано 5 ноября 2016 года . Проверено 27 декабря 2016 .
  13. ^ Air BP. «Авгаз против реактивного топлива» . Архивировано из оригинального 25 апреля 2012 года . Проверено 10 мая 2012 года .
  14. ^ Sergeant Oil & Gas Co Inc. “Авиационный бензин” . Архивировано 28 мая 2012 года . Проверено 10 мая 2012 года .
  15. ^ Air BP . Справочник по продукции BP. Архивировано 8 июня 2011 г. в Wayback Machine . Проверено 13 сентября 2008 г.
  16. ^ «Архивная копия» . Архивировано из оригинала на 2017-04-08 . Проверено 7 апреля 2017 .
  17. ^ «Архивная копия» . Архивировано из оригинала 07.04.2017 . Проверено 7 апреля 2017 .
  18. ^ FAA. «Документ по безопасности этанола FAA» . Архивировано из оригинала 12 января 2012 года . Проверено 10 мая 2012 года .
  19. ^ “Команда – Эскадрилья Авангарда” . Архивировано 16 октября 2016 года . Проверено 27 декабря +2016 .
  20. ^ “Двигатели Lycoming для использования этанола” . caddet-re.org . Архивировано из оригинального 17 мая 2017 года . Проверено 7 мая 2018 .
  21. ^ Двигатели Rotax на этанол / обычное топливо смеси Archived 21 сентября 2013, на Wayback Machine
  22. ^ Библиотека Палаты общин. «Налогообложение авиационного топлива. Стандартное примечание SN00523 (2012)» . п. 3, примечание 11 . Дата обращения 4 ноября 2016 .
  23. ^ «ОТЧЕТ о европейской стратегии мобильности с низким уровнем выбросов – A8-0356 / 2017» . www.europarl.europa.eu . Архивировано 6 декабря 2017 года . Проверено 7 мая 2018 .
  24. ^ Лукас, Кэролайн. «Субсидирует ли правительство авиакомпании на 10 миллиардов фунтов стерлингов?» . 2012 . Проверка фактов. Архивировано 17 августа 2013 года . Проверено 27 августа 2013 года .
  25. ^ Малина, Роберт (2012). «Влияние схемы торговли выбросами Европейского Союза на авиацию США» . Журнал управления воздушным транспортом . 19 : 36–41. DOI10.1016 / j.jairtraman.2011.12.004 . ЛВП1721,1 / 87114 . Архивировано 15 февраля 2015 года . Проверено 27 августа 2013 года .
  26. ^ “ЗАПРАВКА КОМЕТЫ” . Архивировано 17 мая 2013 года . Проверено 2 июля 2013 года .
  27. ^ CSGNetwork.com. “Авиационное топливо-Авгаз Информационный авиационный бензин” . Архивировано 25 мая 2012 года . Проверено 10 мая 2012 года .
  28. ^ Shell.com. «Марки и технические характеристики AvGas» . Архивировано из оригинального 28 мая 2012 года . Проверено 10 мая 2012 года .
  29. ^ «Правила и положения» . Архивировано из оригинального 05 января 2011 года . Проверено 22 апреля 2010 .

Чем заправляют самолеты

Топливо для самолетов бывает двух видов. Поршневые двигатели, которыми оборудуются небольшие самолеты и вертолеты, работают на бензине — так же, как и автомобильные моторы. Правда, по составу такое топливо несколько отличается от автомобильного. Газотурбинные двигатели (турбореактивные и турбовинтовые), которыми сегодня оснащены практически все коммерческие воздушные суда, потребляют топливо для реактивных двигателей, которое также называют авиакеросином.

Основная марка авиакеросина, которым в России заправляют почти все пассажирские, транспортные и военные дозвуковые самолеты и большую часть вертолетов — ТС-1 — топливо сернистое. Оно вырабатывается из нефти с высоким содержанием серы.

В Европе основа системы авиатопливообеспечения — керосин Jet A-1. Он считается более экологичным как раз за счет меньшего содержания серы — при его производстве прямогонная керосино-легроиновая фракция полностью проходит процедуру гидроочистки. Российский авиакеросин — это смесь гидроочищеного и неочищенного прямогонного дистиллятов. В целом же это аналоги — более того, отечественный продукт может использоваться при гораздо более низких температурах, чем «Джет». ТС-1 сегодня наравне с Jet A-1 включен в международные документы и руководства по эксплуатации не только самолетов российского производства, но и лайнеров семейств Airbus и Boeing (правда, только выполняющих полеты по России). Но это авиакеросин для гражданской авиации, не предназначенный для сверхзвуковых самолетов.

«Газпром нефть» запустила НИОКР по созданию неэтилированного авиационного бензина. Вместе с учеными из Всероссийского научно-исследовательского института нефтяной промышленности специалисты компании в 2014 году занялись разработкой рецептуры неэтилированного топлива с октановым числом 91, и сейчас эта работа уже завершена.

Основное авиатопливо для сверхзвуковой авиации — РТ. При его производстве с помощью гидроочистки из нефтяного дистиллята удаляются агрессивные, а также нестабильные соединения, содержащие серу, азот и кислород

При этом повышается термическая стабильность топлива, что крайне важно при полетах на сверхзвуковых скоростях, когда за счет трения о воздух нагревается весь корпус самолета, а вместе с ним и топливо в баках

Разумеется, РТ, обладающее такими характеристиками, можно использовать и в обычных воздушных судах вместо ТС-1. Для самых же скоростных самолетов применяется авиакеросин Т-6, обладающий еще большей термостабильностью и повышенной плотностью.

Что касается авиабензина, то это, по сути, автомобильное моторное топливо, но с улучшенными свойствами, влияющими на надежность работы двигателя. Именно потребность в повышении детонационной стойкости, октанового числа, сортности, обеспечивающих запас динамических характеристик и надежности, заставляет производителей авиабензина добавлять в него тетраэтилсвинец (этилировать). Из-за токсичности эта присадка давно запрещена при производстве автомобильного бензина, но двигатель самолета работает в гораздо более напряженном режиме, а создать неэтилированный авиабензин, не уступающий по характеристикам этилированному, октановое число которого превышает 92–95, пока не удалось никому.

При этом самым современным и совершенным самолетам и вертолетам с поршневыми двигателями нужен авиабензин с повышенным октановым числом — не меньше 100. Поэтому разработкой экологичных аналогов этилированного авиабензина 100LL (одна из самых востребованных марок в мире) сегодня занимаются ведущие производители и научные центры во всем мире. В том числе подобная программа существует и у «Газпром нефти».

100 тысяч авиарейсов выполняется в мире каждый день

Сколько топлива нужно для заправки?

Расход топлива является, чуть ли не основным параметром воздушного судна. Ведь чем меньше топлива расходуется, тем меньше затрат на обслуживание самолета приходится компании.

Количество горючего на борту напрямую зависит от параметров полета и типа самолета. На близкое расстояние топливо скорей всего сильно сэкономят.

Также немаловажен маршрут полета, наличие промежуточных пунктов посадки. Учитываются даже погодные условия на маршрутом пути.

Рассчитать точное количество топлива, которое требуется для заправки лайнера, очень сложно. Это число редко совпадает с тем, что указано в технических характеристиках. Однако примерно посчитать эту цифру все-таки можно.

На определенный рейс, самолет заправят учитывая:

  1. Топливо необходимое для преодоления расстояния до аэропорта назначении.
  2. Топливо для полета от аэропорта назначение до запасного аэродрома.
  3. Горючее для ожидания посадки в течение 30 минут на малой высоте.
  4. Надбавка 5% на непредвиденные обстоятельства.

Видео как заправляют самолеты:Сколько же стоит заправить самолет на один рейс? За пример возьмем стоимость тонны керосина в аэропорту Домодедово – примерно 47 300 рублей за тонну с учетом НДС. Для примерного расчета будем опираться на эту цену.

Возьмем для примера рейс Москва – Санкт-Петербург. Расстояние перелета в данном случае будет равно 633 км. Путем умножения, получаем расход на пассажира = 16,14 кг., а учитывая цену керосина в аэропорту Домодедово, это 763,5 рубля. Средняя вместимость лайнера 737 – 150 человек, соответственно заправить его обойдется в 114 523 руб. Эта цифра, естественно не окончательный расход. Учитывая вышеописанные условия, она может увеличиться до 150 000 ₽.

Сколько стоит заправить Боинг 747?

Рассмотрим один из самых больших лайнеров современности Боинг 747. Несмотря на свои гигантские размеры и большую стоимость, самолет может похвастать своей высокой экономичностью. Потребляет он для модели 100 – 32г. на пассажира за километр, а серии 300 – 22,4 г. Часовой расход горючего – 14 500 км., то есть на полет Москва-Санкт-Петербург чисто гипотетически будет потрачено около 700 000₽. Тем не менее самолет очень популярен и состоит в большинстве ведущих компаний мира.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий